Recubrimiento comestible a base de alginato en combinación con eugenol nanoencapsulado y su efecto conservador en la vida útil de jitomate (Solanum lycopersicum)
DOI:
https://doi.org/10.18633/biotecnia.v23i3.1477Palabras clave:
Vida útil, recubrimientos comestibles, eugenol, nanopartículas poliméricas y HS-SPME.Resumen
Las deficiencias en la tecnología postcosecha y el ataque de fitopatógenos ocasionan que los productos hortofrutícolas, como el jitomate, presenten una vida útil muy corta. Además del daño económico, esto puede traer efectos negativos sobre la salud y el medio ambiente. El objetivo de este trabajo fue evaluar un recubrimiento activo de alginato de sodio en combinación con nanocápsulas poliméricas cargadas con eugenol (AL-NP-EUG) para mejorar la vida útil del jitomate. Utilizando la técnica de nanoprecipitación se obtuvieron NP con un tamaño de 171 nm, un índice de polidispersidad de 0.113 y un potencial zeta de –2.47 mV. Utilizando la técnica de HS-SPME con CG-FID, se determinó un porcentaje de eficiencia de encapsulación de 31.85 % para el EUG. El estudio de vida útil demostró que los jitomates tratados con el AL-NP-EUG mantuvieron por más tiempo la firmeza que aquellos sin el recubrimiento. Además, en el ensayo de patogenicidad se demostró que los jitomates con el AL-NP-EUG no presentaron signos de daño ocasionado por el fitopatógeno Colletotrichum gloesporoides. Se concluyó que la formulación de EUG nanoencapsulado e incorporado al recubrimiento comestible presenta alto potencial para su aplicación como nanoconservador natural de productos hortofrutícolas como el jitomate.
Descargas
Citas
Abbaszadeh, S. et al. (2014) ‘Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi’, Journal de Mycologie Medicale. Elsevier Masson SAS, 24(2), pp. e51–e56. doi: 10.1016/j.mycmed.2014.01.063.
Ali, A. et al. (2010) ‘Gum arabic as a novel edible coating for enhancing shelf-life and improving postharvest quality of tomato (Solanum lycopersicum L.) fruit’, Postharvest Biology and Technology. Elsevier, 58(1), pp. 42–47. doi: 10.1016/j.postharvbio.2010.05.005.
Asbahani, A. El et al. (2015) ‘Essential oils: From extraction to encapsulation’, International Journal of Pharmaceutics. Elsevier B.V., 483(1–2), pp. 220–243. doi: 10.1016/j.ijpharm.2014.12.069.
Barad, S. et al. (2017) ‘Differential gene expression in tomato fruit and Colletotrichum gloeosporioides during colonization of the RNAi-SlPH tomato line with reduced fruit acidity and higher pH’, BMC Genomics. BioMed Central Ltd., 18(1). doi: 10.1186/s12864-017-3961-6.
Boehm, A. L. et al. (2003) ‘Nanoprecipitation technique for the encapsulation of agrochemical active ingredients’, Journal of Microencapsulation, 20(4), pp. 433–441. doi: 10.1080/0265204021000058410.
Camele, I. et al. (2012) ‘In vitro control of post-harvest fruit rot fungi by some plant essential oil components’, International Journal of Molecular Sciences. Molecular Diversity Preservation International, 13(2), pp. 2290–2300. doi: 10.3390/ijms13022290.
Choudhary, D. K. et al. (2017) Volatiles and food security: Role of volatiles in agro-ecosystems, Volatiles and Food Security: Role of Volatiles in Agro-Ecosystems. Springer Singapore. doi: 10.1007/978-981-10-5553-9.
Contri, R. V. et al. (2013) ‘Vegetable oils as core of cationic polymeric nanocapsules: Influence on the physicochemical properties’, Journal of Experimental Nanoscience, 8(7–8), pp. 913–924. doi: 10.1080/17458080.2011.620019.
Correa-Pacheco, Z. N. et al. (2017) ‘The effect of nanostructured chitosan and chitosan-thyme essential oil coatings on Colletotrichum gloeosporioides growth in vitro and on cv Hass avocado and fgruit quality’, Journal of Phytopathology. Blackwell Publishing Ltd, 165(5), pp. 297–305. doi: 10.1111/jph.12562.
Diao, W. R. et al. (2014) ‘Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.)’, Food Control. Elsevier Ltd, 35(1), pp. 109–116. doi: 10.1016/j.foodcont.2013.06.056.
Fabi, J. P. et al. (2007) ‘Papaya fruit ripening: Response to ethylene and 1-methylcyclopropene (1-MCP)’, Journal of Agricultural and Food Chemistry, 55(15), pp. 6118–6123. doi: 10.1021/jf070903c.
Fagundes, C. et al. (2014) ‘Effect of antifungal hydroxypropyl methylcellulose-beeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit’, Postharvest Biology and Technology. Elsevier, 92, pp. 1–8. doi: 10.1016/j.postharvbio.2014.01.006.
FAO (2011) Global food losses and food waste – Extent, causes and prevention, Food and Agriculture Organization of the United Nations. Roma. doi: 10.1098/rstb.2010.0126.
Fessi, H. et al. (1989) ‘Nanocapsule formation by interfacial polymer deposition following solvent displacement’, International Journal of Pharmaceutics. Elsevier, 55(1), pp. R1–R4. doi: 10.1016/0378-5173(89)90281-0.
Feyzioglu, G. C. and Tornuk, F. (2016) ‘Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications’, LWT - Food Science and Technology. Academic Press, 70, pp. 104–110. doi: 10.1016/j.lwt.2016.02.037.
Fraj, A. et al. (2019) ‘A comparative study of oregano (Origanum vulgare L.) essential oil-based polycaprolactone nanocapsules/microspheres: Preparation, physicochemical characterization, and storage stability’, Industrial Crops and Products. Elsevier B.V., 140, p. 111669. doi: 10.1016/j.indcrop.2019.111669.
Galindo-Rodriguez, S. et al. (2004) ‘Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods’, Pharmaceutical Research, 21(8), pp. 1428–1439. doi: 10.1023/B:PHAM.0000036917.75634.be.
Gomes, C., Moreira, R. G. and Castell-Perez, E. (2011) ‘Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications’, Journal of Food Science. John Wiley & Sons, Ltd, 76(2), pp. N16–N24. doi: 10.1111/j.1750-3841.2010.01985.x.
Granata, G. et al. (2018) ‘Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation’, Food Chemistry. Elsevier, 269, pp. 286–292. doi: https://doi.org/10.1016/j.foodchem.2018.06.140.
Grande-Tovar, C. D. et al. (2018) ‘Chitosan coatings enriched with essential oils: Effects on fungi involve in fruit decay and mechanisms of action’, Trends in Food Science and Technology. Elsevier, 78(May), pp. 61–71. doi: 10.1016/j.tifs.2018.05.019.
Guerreiro, A. C. et al. (2015) ‘The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. fresh fruit storage’, Postharvest Biology and Technology. Elsevier, 100, pp. 226–233. doi: 10.1016/j.postharvbio.2014.09.002.
He, X. and Hwang, H. M. (2016) ‘Nanotechnology in food science: Functionality, applicability, and safety assessment’, Journal of Food and Drug Analysis. Elsevier, 24(4), pp. 671–681. doi: 10.1016/j.jfda.2016.06.001.
Ju, J. et al. (2019) ‘Application of edible coating with essential oil in food preservation’, Critical Reviews in Food Science and Nutrition. Taylor & Francis, 59(15), pp. 2467–2480. doi: 10.1080/10408398.2018.1456402.
Lammari, N. et al. (2020) ‘Encapsulation of essential oils via nanoprecipitation process: Overview, progress, challenges and prospects’, Pharmaceutics. MDPI AG, p. 431. doi: 10.3390/pharmaceutics12050431.
Marchese, A. et al. (2017) ‘Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint’, Critical Reviews in Microbiology. Taylor and Francis Ltd, pp. 668–689. doi: 10.1080/1040841X.2017.1295225.
Navarro-López, E. R. et al. (2012) ‘Calidad poscosecha en frutos de tomate hidropónico producidos con agua residual y de pozo’, Revista Chapingo, Serie Horticultura. Universidad Autónoma Chapingo, 18(3), pp. 263–277. doi: 10.5154/r.rchsh.2009.11.097.
Pandey, A. K. et al. (2017) ‘Essential oils: Sources of antimicrobials and food preservatives’, Frontiers in Microbiology. Frontiers, 7(JAN), p. 2161. doi: 10.3389/fmicb.2016.02161.
Pascoli, M. et al. (2018) ‘State of the art of polymeric nanoparticles as carrier systems with agricultural applications: a minireview’, Energy, Ecology and Environment. Joint Center on Global Change and Earth System Science of the University of Maryland and Beijing Normal University, 3(3), pp. 137–148. doi: 10.1007/s40974-018-0090-2.
Piña-Barrera, A. M. et al. (2019) ‘Application of a multisystem coating based on polymeric nanocapsules containing essential oil of Thymus vulgaris L. to increase the shelf life of table grapes (Vitis vinifera L.)’, IEEE Transactions on NanoBioscience. Institute of Electrical and Electronics Engineers (IEEE), 18(4), pp. 549–557. doi: 10.1109/tnb.2019.2941931.
Prates, L. H. F. et al. (2019) ‘Eugenol diffusion coefficient and its potential to control Sitophilus zeamais in rice’, Scientific reports. NLM (Medline), 9(1), p. 11161. doi: 10.1038/s41598-019-47562-1.
Sotelo-Boyás, M. E. et al. (2017) ‘Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens’, LWT - Food Science and Technology. Academic Press, 77, pp. 15–20. doi: 10.1016/j.lwt.2016.11.022.
Sucharitha, K. V., Beulah, A. M. and Ravikiran, K. (2018) ‘Effect of chitosan coating on storage stability of tomatoes (Lycopersicon esculentum Mill)’, International Food Research Journal, 25(1), pp. 93–99.
Vicente, A. R. et al. (2007) ‘The linkage between cell wall metabolism and fruit softening: Looking to the future’, Journal of the Science of Food and Agriculture. John Wiley & Sons, Ltd, 87(8), pp. 1435–1448. doi: 10.1002/jsfa.2837.
Wang, L., Hu, C. and Shao, L. (2017) ‘The antimicrobial activity of nanoparticles: Present situation and prospects for the future’, International Journal of Nanomedicine. Dove Press, 12, pp. 1227–1249. doi: 10.2147/IJN.S121956.
Wattanasatcha, A., Rengpipat, S. and Wanichwecharungruang, S. (2012) ‘Thymol nanospheres as an effective anti-bacterial agent’, International Journal of Pharmaceutics. Elsevier B.V., 434(1–2), pp. 360–365. doi: 10.1016/j.ijpharm.2012.06.017.
Yao, B. N. et al. (2014) ‘The role of hydrolases in the loss of firmness and of the changes in sugar content during the post-harvest maturation of Carica papaya L. var solo 8’, Journal of Food Science and Technology. Springer, 51(11), pp. 3309–3316. doi: 10.1007/s13197-012-0858-x.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)