Remoción de negro de Eriocromo T de agua utilizando un material compuesto a base de quitosano/zeolita: un estudio cinético

Autores/as

  • Héctor Manuel Guzmán Grijalva Universidad de Sonora
  • Juana Alvarado Ibarra Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora. Hermosillo, Son., México. https://orcid.org/0000-0003-2943-493X
  • Martín Francisco Zamarrón Pulé Posgrado en Sustentabilidad, Departamento de Ingeniería Industrial, Universidad de Sonora. Hermosillo, Son., México.
  • Javier Esquer Peralta Posgrado en Sustentabilidad, Departamento de Ingeniería Industrial, Universidad de Sonora. Hermosillo, Son., México. https://orcid.org/0000-0002-3031-1104

DOI:

https://doi.org/10.18633/biotecnia.v23i3.1479

Palabras clave:

adsorción, material compuesto, quitosano, chabazita, modelo cinético

Resumen

Se preparó un material compuesto utilizando quitosano y chabazita para la eliminación del colorante negro eriocromo T del agua. Los análisis de microscopía electrónica de barrido (SEM) mostraron que las partículas de chabazita se incrustaron en la matriz de quitosano. Los análisis termogravimétricos indicaron que el quitosano se degrada químicamente a temperaturas superiores a 225 °C; la chabazita sólo experimenta una disminución de peso debido a la pérdida de humedad. Los análisis de espectroscopia infrarroja por transformada de Fourier (FTIR) en el quitosano detectaron la presencia de enlaces O-H, N-H, C-H, C-N y C-O, grupos amino protonados y sacáridos. En la chabazita se detectaron moléculas de H2O, grupos T-O y O-T-O, donde la “T” corresponde a átomos de Si o Al, grupos O-H aislados y con enlaces H, y grupos Si-O-Si. En los experimentos cinéticos, se logró una disminución del 86 % de la concentración de colorante en la solución en aproximadamente 500 minutos. Se utilizó el método de linealización para evaluar el ajuste de los datos experimentales con los modelos cinéticos de adsorción de pseudo-primer orden, pseudo-segundo orden, Elovich y difusión intra-partícula. Los experimentos cinéticos mostraron que el mecanismo de sorción corresponde a un modelo de pseudo-segundo orden.

Citas

Ahmad, M., Ahmed, S., Swami, B. and Ikram, S. 2015. Adsorption of heavy metals ions: role of chitosan and cellulose for water treatment. International Journal of Pharmacognosy. 2: 280-289.

Álvarez, L., Valdez, R., García, R., Olivo, D., Garza, M, Meza, E. and Gortárez, P. 2015. Decolorization and biogas production by an anaerobic consortium: effect of different azo dyes and quinoid redox mediators. Water Science and Technology. 72: 794-801.

An, J., Dultz, S. 2006. Adsorption of tannic acid on chitosan-montmorillonite as a function of pH and surface charge properties. Applied Clay Science. 36: 256-264.

Attallah, O. A., Al-Ghobashy, M. A., Nebsen, M. and Salem, M. Y. 2016. Removal of cationic and anionic dyes from aqueous solution with magnetite/pectin and magnretite/silica/pectin hybrid nanocomposites: kinetic, isotherm and mechanism analysis. RSC Advances. 6: 11461-11480.

Aysan, H., Edebali, S., Ozdemir, C., Celik, M. and Karakaya, N. 2016. Use of chabazite, a natural abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous and Mesoporous Materials. 235: 78-86.

Azizian, S. 2004. Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science. 276: 47-52.

Bailie, J.E., Hutchings, G.J. and O’Leary, S. 2001. Supported Catalyst. In Encyclopedia of Materials: Science and Technology. K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan and P. Veyssière (ed.), pp. 8986–8990. Elsevier, Oxford.

Bashir, S., Teo, Y. Y., Ramesh, K. and Rizwan, M. 2019. Synthesis and Characterization of pH-sensitive N-succinyl chitosan hydrogel and its properties for biomedical applications. Journal of the Chilean Chemical Society. 64: 4571-4574.

Cestarolli, D., das Graças de Oliveira, A. and Guerra, E. 2019. Removal of eriochrome black textile dye from aqueous solution by combined electrocoagulation-electroflotation methodology. Applied Water Science. 9: 101.

Dambies, L., Guimon, C., Yiacoumi, S. and Guibal, E. 2001. Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. Colloid Surface A. 177: 203-214.

Djelad, A., Morsli, A., Robitzer, M., Bengueddach, A., Di Renzo, F. and Quignard, F. 2016. Sorption of Cu(II) Ions on Chitosan-Zeolite X Composites: Impact on Gelling and Drying Conditions. Molecules. 21: 1 – 15.

Dimowa, L., Piroeva, I., Atanasova, V., Rusew, R. and Shivachec, B. 2018. Structural peculiarities of natural chabazite modified by ZnCl2 and NiCl2. Bulgarian Chemical Communications. 50: 114-122.

Escobar-Sierra, D., Ossa-Orozco, C., Quintana-Rodríguez, M. and Ospina-Villa, W. 2013. Optimización de un protocolo de extracción de de quitina y quitisano desde caparazones de crustáceos. Scientia et Technica. 18: 260-266.

Falk, M. 1984. The frequency of the H-O-H bending fundamental in solids and liquids. Spectrochimica Acta Part A: Molecular Spectroscopy. 40: 43-48.

Flores, A. 2015. Estudios de equilibrio de adsorción de fluoruros sobre compositos a base de quitosano. Masters dissertation. Universidad Autónoma de San Luis Potosí, San Luis Potosí.

Gürses, A., Acikyildiz, M., Günes, K. and Gürses, M. 2016. Dyes and Pigments. Springer. Switzerland.

Ho, Y.S. and McKay, G. 1999. Pseudo-Second Order Model for Sorption Processes. Process Biochemistry. 34: 451-465.

Kajjumba, G., Emik, S., Ongen, A., Kurtulus, H. and Aydin, S. 2018. Modelling of Adsorption Kinetic Processes – Errors, Theory and Application. At: Advanced Sorption Process Applications. Serpil Edebali (ed.). IntechOpen Limited, London.

Karimi, M., Mahdavinia, G., Massoumi, B., Baghban, A. and Saraei, M. 2018. Ionically crosslinked magnetic chitosan/k-carrageenan bioadsorbents for removal of anionic eriochrome black-T. International Journal of Biological Macromolecules. 113: 361-375.

Khurana, I., Shaw, A., Bharti, Khurana, J. and Rai, P., 2018. Batch and dynamic adsorption of eriochrome black-T from water on magnetic graphene oxide: experimental and theoretical studies. Journal of Environmental Chemical Engineering. 6: 468-477.

Kumar, S., Prasad, K., Gil, J., Sobral, A. and Khon, J. 2018. Mesoporous zeolite-chitosan composite for enhanced capture and catalytic activity in chemical fixation of CO2. Carbohydrate Polymers. 198: 401-406.

Kyzas, G. and Bikiaris, D. 2015. Recent modifications of chitosan for adsorption applications: a critical and systematic review. Marine Drugs. 13: 312-337.

Lagergren S. and Vetenskapsakademiens K. S. 1898. Zur theorie der sogenannten adsorption gelster stoffe. Handlingar. 24:1–39.

Lakhan, R., Kumar, P. and Pratap, R. 2015. Enzymatic decolorization and degradation of azo dyes-a review. International Biodeterioration & Biodegradation. 104: 21-31.

Largitte, L. and Pasquier, R. 2016. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design. 109: 495-504.

Li, J., Corma, A. and Yu, J. 2015. Synthesis of new zeolite structures. Royal Society of Chemistry. 44: 7112-7121.

Lou, X. and Deng, F. 2018. Nanomaterials for the removal of Pollutants and Resource reutilization. 1st ed. Elsevier.

Moeinpour, F., Alimoradi, A. and Kazemi, M. 2014. Efficient removal of eriochrome black-T from aqueous solution using NiFe2O4 magnetic nanoparticles. Journal of Environmental Health Science and Engineering. 12:1

Montalvo, S., Huiliñir, C., Borja, R., Sánchez, E. and Herrmann, C. 2020. Application of zeolites for biological treatment processes of solid wastes and wastewaters – A review. Bioresource Technology. 301: 1-10.

Oladoja, N., Unuabonah, E., Amuda, O. and Kolawole, O. 2017. Operational principles and material requirements for coagulation/flocculation and adsorption-based watBer treatment operations. Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment. 1-11.

Park, J., Wang, J., Tafti, N. and Delaune, R. 2018. Removal of eriochrome black T by sulfate radical generated from Fe-impregnated biochar/persulfate in fenton-like reaction. Journal of Industrial and Engineering Chemistry.

Pérez, A., Díaz, P., Rangel, J., Cerino, F., Ovando, V. and Alcalá, J. 2016. Fluoride adsorption capacity of composites based on chitosan-zeolite-algae. Revista Mexicana de Ingeniería Química. 15: 139-147.

Pholosi, A., Naidoo, E. B. and Ofomaja, A. E. 2020. Intraparticle diffusion of Cr(VI) through biomass and magnetite coatedbiomass: A comparative kinetic and diffusion studys. South African Journal of Chemical Engineering. 32: 39-55.

Plazinski, W., Dziuba, J. and Rudzinski, W. 2013. Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption. 19: 1055-1064.

Saha, T. K., Bhoumik, N. C., Karmaker, S., Ahmed, M. G., Ichikawa, H. and Fukumori, Y. 2010. Adsorption of Methyl Orange onto chitosan from aqueous solution. Journal of Water Resource and Protection. 2: 298-906.

Szatkowski, T., Kołodziejczak-Radzimska, A., Zdarta, J., Szwarc-Rzepka, K., Paukszta, D., Wysokowski, M., Ehrlich, H. and Jesionowski, T. 2015. Synthesis and characterization of hydroxyapatite/chitosan composites. Physicochemical Problems of Mineral Processing. 51: 575-585.

Taaca, K. L. M. and Vasquez, M. R. 2017. Fabrication of Ag-exchanged zeolite/chitosan composites and effects of plasma treatment. Microporous and Mesoporous Materials. 241: 383-291.

Tran, V., Ngo, H., Guo, W., Zhang, J., Liang, S., Ton-That, C. and Zhang, X. 2015. Typical low-cost bio sorbents for adsorptive removal of specific organic pollutants from water. Bioresource Technology. 182: 353-363.

Uddin, M. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal. 308: 438-462.

Descargas

Publicado

2021-10-25

Número

Sección

Artículos