Evaluation of the antioxidant interaction between butylated hydroxytoluene and quercetin and their utility for beef patties preservation

Autores/as

  • Flavio Martinez-Morales https://orcid.org/0000-0003-0339-1089
  • Juan Ramon Zapata-Morales
  • Othoniel Hugo Aragon-Martinez Universidad Autónoma de San Luis Potosí

DOI:

https://doi.org/10.18633/biotecnia.v24i1.1546

Palabras clave:

actividad antioxidante, sinergismo, degradación del color, oxidación proteica, carne de res molida

Resumen

El presente estudio tuvo como objetivo encontrar una mezcla de BHT y quercetina con un sinergismo antioxidante que permitiera usar a ambos compuestos a concentraciones bajas para posteriormente, evaluar la acción preservante de la combinación seleccionada en hamburguesas de carne de res almacenadas a 4 ºC. Nuestros resultados mostraron que quercetina tuvo mayor actividad antioxidante que BHT y de las cinco combinaciones evaluadas, la combinación 1:5 de BHT y quercetina presentó una actividad antioxidante mayor. Por lo tanto, esta misma combinación 1:5 a una dosis de 5.2 y 26 mg/kg de BHT y quercetina fue empleada para las hamburguesas de carne, donde ésta produjo una acción benéfica en la abundancia del color rojo y amarillo y en la capacidad antioxidante y una reducción de metamioglobina y sustancias reactivas al ácido tiobarbitúrico, semejante al producido por 100 o 36 mg/kg de BHT o quercetina, en comparación a los valores observados en las hamburguesas sin conservadores (testigo). Con este estudio se muestra por primera vez que, el uso de una combinación 1:5 de BHT-quercetina es un método efectivo, sencillo y asequible para preservar hamburguesas de carne, lo cual podrá sustituir la adición individual de altas concentraciones de estos compuestos por la industria cárnica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alonso-Castro, A.J., Rangel-Velázquez, J.E., Isiordia-Espinoza, M.A., Villanueva-Solís, L.E., Aragon-Martinez, O.H. y Zapata-Morales, J.R. 2017. Synergism between naproxen and rutin in a mouse model of visceral pain. Drug Development Research. 78: 184-188. https://doi.org/10.1002/ddr.21391

Andres, S., Pevny, S., Ziegenhagen, R., Bakhiya, N., Schäfer, B., Hirsch-Ernst, K.I. y Lampen, A. 2018. Safety aspects of the use of quercetin as a dietary supplement. Molecular Nutrition & Food Research. 62. https://doi.org/10.1002/mnfr.201700447

Bekhit, A.E.D., Geesink, G.H., Ilian, M.A., Morton, J.D. y Bickerstaffe, R. 2003. The effects of natural antioxidants on oxidative processes and metmyoglobin reducing activity in beef patties. Food Chemistry. 81: 175-187. https://doi.org/10.1016/S0308-8146(02)00410-7

Bekhit, A.E.D., Geesink, G.H., Ilian, M.A., Morton, J.D., Sedcole, J.R. y Bickerstaffe, R. 2004. Pro-oxidant activities of carnosine, rutin and quercetin in a beef model system and their effects on the metmyoglobin-reducing activity. European Food Research and Technology. Technol. 218: 507–514. https://doi.org/10.1007/s00217-004-0904-7

Borges, T.H., Serna, A., López, L.C., Lara, L., Nieto, R. y Seiquer, I. 2019. Composition and antioxidant properties of spanish extra virgin olive oil regarding cultivar, harvest year and crop stage Antioxidants (Basel). 8: 217. https://doi.org/10.3390/antiox8070217

Borgohain, R., Guha, A.K., Pratihar, S. y Handique, J.G. 2015. Antioxidant activity of some phenolic aldehydes and their diimine derivatives: A DFT study. Computational and Theoretical Chemistry. 1060: 17-23. https://doi.org/10.1016/j.comptc.2015.02.014

Cantú-Valdéz, J.A., Gutiérrez-Soto, G., Hernández-Martínez, C.A., Sinagawa-García, S.R., Quintero-Ramos, A., Hume, M.E., Herrera-Balandrano, D.D. y Méndez-Zamora, G. 2020. Mexican oregano essential oils as alternatives to butylated hydroxytoluene to improve the shelf life of ground beef. Food Science & Nutrition. 8: 4555-4564. https://doi.org/10.1002/fsn3.1767

Checkmahomed, L., Padey, B., Pizzorno, A., Terrier, O., Rosa-Calatrava, M., Abed, Y., Baz, M. y Boivin, G. 2020. In vitro combinations of baloxavir acid and other inhibitors against seasonal influenza A viruses. Viruses. 12: 1139. https://doi.org/10.3390/v12101139

Chou, T.C. 2010. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Research. 70: 440-446. DOI: 10.1158/0008-5472.CAN-09-1947

Chou, T.C. 2006. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews. 58: 621-681. DOI: 10.1124/pr.58.3.10

Chou, T.C. y Martin, N. 2005. CompuSyn for drug combinations: PC software and user’s guide: a computer program for quantitation of synergism and antagonism in drug combinations, and the determination of IC50 and ED50 and LD50 values. ComboSyn. Paramus, NJ.

Eymard, S., Carcouët, E., Rochet, M.J., Dumay, J., Chopin, C. y Genot, C. 2005. Development of lipid oxidation during manufacturing of horse mackerel surimi. Journal of the Science of Food and Agriculture. 85: 1750-1756. https://doi.org/10.1002/jsfa.2145

Fan, Y., Li, J., Guo, Y., Xie, L. y Zhang, G. 2021. Digital image colorimetry on smartphone for chemical analysis: A review. Measurement. 171, 108829. https://doi.org/10.1016/j.measurement.2020.108829

Gallego, M.G., Gordon, M.H., Segovia, F.J. y Almajano, M.P. 2015. Caesalpinia decapetala extracts as inhibitors of lipid oxidation in beef patties. Molecules. 20: 13913-13926. https://doi.org/10.3390/molecules200813913

Gonzalez‑Rivera, M.L., Martinez‑Morales, F., Alonso‑Castro, A.J., López‑Rodríguez, J.F., Aranda Romo, S., Zapata‑Morales, J.R. y Aragon‑Martinez, O.H. 2019. Matrix effect evaluation and validation of the 2,2′‑azino‑bis (3‑ethylbenzothiazoline‑6‑sulfonic acid) radical cation scavenging assay, as well as its application using a tejate, an ancient beverage in Mexico. Chemical Papers. 73: 2767-2781. https://doi.org/10.1007/s11696-019-00829-3

International Conference on Harmonization. 2005. International conference on harmonization of technical requirements for the registration of pharmaceuticals for human use, validation of analytical procedures: text and methodology Q2(R1). Geneva, Switzerland.

Kapetanakou, A.E., Pateraki, G.L. y Skandamis, P.N. 2020. Developing a commercial antimicrobial active packaging system of ground beef based on "tsipouro" alcoholic distillate. Foods. 9: 1171. https://doi.org/10.3390/foods9091171

Kim, S.J., Min, S.C., Shin, H.J., Lee, Y.J., Cho, A.R., Kim, S.Y. y Han, J. 2013. Evaluation of the antioxidant activities and nutritional properties of ten edible plant extracts and their application to fresh ground beef. Meat Science. 93: 715-722. https://doi.org/10.1016/j.meatsci.2012.11.029

Liu, R. y Mabury, S.A. 2020. Synthetic phenolic antioxidants: a review of environmental occurrence, fate, human exposure, and toxicity. Environmental Science & Technology. 54: 11706-11719. https://doi.org/10.1021/acs.est.0c05077

Martinez-Morales, F., Alonso-Castro, A.J., Zapata-Morales, J.R., Carranza-Álvarez, C. y Aragon-Martinez, O.H. 2020. Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. Chemical Papers. 74: 3325-3334. https://doi.org/10.1007/s11696-020-01161-x

Mtibaa, A.C., Smaoui, S., Ben Hlima, H., Sellem, I., Ennouri, K. y Mellouli, L. 2019. Enterocin BacFL31 from a safety Enterococcus faecium FL31: natural preservative agent used alone and in combination with aqueous peel onion (Allium cepa) extract in ground beef meat storage. BioMed Research International. 2019: 4094890. https://doi.org/10.1155/2019/4094890

Electronic Code of Federal Regulations. Title 21, Chapter I, Subchapter B, Part 182, Subpart D, Sec. 182.3173. Butylated hydroxytoluene. [Consultado 12 Mayo 2021] 2021. Disponible en: https://www.ecfr.gov/cgi-bin/text-idx?SID=a271652c302a4d8fb472e9e03ab4c34f&mc=true&node=pt21.3.182&rgn=div5#_top.

National Institute of Diabetes and Digestive and Kidney Diseases (NIDDKD). 2012. Quercetin. En: LiverTox: Clinical and research information on drug-induced liver injury [Internet]. NIDDKD (ed.), updated 28 Mar 2020, Bethesda, MD. [Consultado 12 Mayo 2021] Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK556474/.

Ouerfelli, M., Villasante, J., Ben Kaâb, L.B. y Almajano, M. 2019. Effect of neem (Azadirachta indica L.) on lipid oxidation in raw chilled beef patties. Antioxidants (Basel). 8: 305. https://doi.org/10.3390/antiox8080305

Popovic-Milenkovic, M.T., Tomovic, M.T., Brankovic, S.R., Ljujic, B.T. y Jankovic, S.M. 2014. Antioxidant and anxiolytic activities of Crataegus nigra Wald. et Kit. berries. Acta Poloniae Pharmaceutica. 71: 279-85.

Ravindranath, R., Periasamy, A.P., Roy, P., Chen, Y.W. y Chang, H.T. 2018. Smart app-based on-field colorimetric quantification of mercury via analyte-induced enhancement of the photocatalytic activity of TiO2-Au nanospheres. Analytical and Bioanalytical Chemistry. 410: 4555-4564. https://doi.org/10.1007/s00216-018-1114-7

Sebaugh, J.L. 2011. Guidelines for accurate EC50/IC50 estimation. Pharmaceutical Statistics. 10: 128–134. https ://doi.org/10.1002/pst.426

Singh, D.P., Verma, S. y Prabha, R. 2018. Investigations on antioxidant potential of phenolic acids and flavonoids: the common phytochemical ingredients in plants. Journal of Plant Biochemistry & Physiology. 6: 1000219. DOI: 10.4172/2329-9029.1000219

Tallarida, R.J. 2002. The interaction index: a measure of drug synergism. Pain. 98: 163-168. DOI: 10.1016/s0304-3959(02)00041-6

US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research y Center for Veterinary Medicine. 2018. Bioanalytical method validation: guidance for industry. Maryland, United States of America. [Consultado 12 Mayo 2021] Disponible en: https://www.fda.gov/media/70858/download.

US Food and Drug Administration (FDA). 2019. Food additive status list. [Consultado 12 Mayo 2021] Disponible en: https://www.fda.gov/food/food-additives-petitions/food-additive-status-list#ftnB.

Wang, W. y Kannan, K. 2019. Quantitative identification of and exposure to synthetic phenolic antioxidants, including butylated hydroxytoluene, in urine. Environment International. 128: 24-29. https://doi.org/10.1016/j.envint.2019.04.028

Weinroth, M.D., Britton, B.C., McCullough, K.R., Martin, J.N., Geornaras, I., Knight, R., Belk, K.E. y Metcalf, J.L. 2019. Ground beef microbiome changes with antimicrobial decontamination interventions and product storage. PLoS One. 14: e0217947. https://doi.org/10.1371/journal.pone.0217947

Zahid, M.A., Seo, J.K., Parvin, R., Ko, J. y Yang, H.S. 2019. Comparison of butylated hydroxytoluene, ascorbic acid, and clove extract as antioxidants in fresh beef patties at refrigerated storage. Food Science of Animal Resources. 39: 768-779. https://doi.org/10.5851/kosfa.2019.e67

Zapata-Morales, J.R., Alonso-Castro, A.J., Muñoz-Martínez, G.S., Martínez-Rodríguez, M.M., Nambo-Arcos, M.E., Brennan-Bourdon, L.M., Aragón-Martínez, O.H. y Martínez-Morales, J.F. 2021. In vitro and in vivo synergistic interactions between the flavonoid rutin with paracetamol and non-steroidal anti-inflammatory drugs. Archives of Medical Research. S0188-4409(21)00078-3. https://doi.org/10.1016/j.arcmed.2021.03.007

Publicado

2022-02-23

Cómo citar

Martinez-Morales, F., Zapata-Morales, J. R., & Aragon-Martinez, O. H. (2022). Evaluation of the antioxidant interaction between butylated hydroxytoluene and quercetin and their utility for beef patties preservation. Biotecnia, 24(1), 69–78. https://doi.org/10.18633/biotecnia.v24i1.1546

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.