• MA Mazorra-Manzano Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.)
  • JM Moreno-Hernández Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.)
  • MJ Torres-Llanez Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.)
  • JC Ramírez-Suarez Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.)
  • AF González-Córdova Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.)
  • B Vallejo-Córdoba Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.)
Palabras clave: proteasas, coagulación de la leche, flor de azahar, quesos, coagulantes vegetales


La búsqueda de nuevas fuentes de proteasas es un área de investigación de gran actividad por su uso potencial en procesos biotecnológicos en áreas de la medicina, alimentos e industria de los detergentes. En alimentos, las proteasas extraídas de plantas han sido consideradas sustitutos adecuados del cuajo natural para la elaboración de quesos, así como en la producción de hidrolizados, ablandadores de carne, agentes digestivos, etc. El presente estudio tiene como objetivo evaluar la actividad de extractos de flores de narango agrio para coagular la leche y su acción sobre distintos sustratos proteicos, como hemoglobina, albumina y caseína. La actividad proteolítica que presentaron estos extractos en un amplio rango de pH, indican la presencia de diferentes tipos de proteasas (e.g., aspárticas, serinas y cisteínas). La actividad proteolítica en condiciones ácidas y el patrón de degradación de caseínas, sugieren la presencia de proteasas tipo quimosina y ofrece una fuente de enzimas coagulante. La alta actividad proteolítica en un amplio rango de temperatura y pH, hacen de las flores de cítricos una nueva fuente de proteasas con uso potencial en distintos procesos biotecnológicos (e.g., producción de quesos).


Adetunji, V.O., Salawu, O.T. 2008. West African soft cheese ‘wara’ processed with Calotropis procera and Carica papaya: A comparative assessment of nutritional values. African Journal of Biotechnology 7: 3360-3362.

Andren, A. 2011. Cheese: rennets and coagulants. In: Fuquay, J., Fox, P., McSweeney, P. (Eds.), Encyclopedia of Dairy Science. Academic Press, Oxford, UK, pp. 574-578.

Arima, K., Ya, J., Iwasaki, S. 1970. Milk-clotting enzyme from Mucor pusillus var. Lindt. In: Pearlman, E. G., Lorand, L. (Ed.), Methods in Enzymology. Academic Press, New York, pp. 446-459.

Dalgleish, D.G., 1992. The enzymatic coagulation of milk. In: Fox, P. F. (Ed.), Advanced Dairy Chemistry, vol. 1. Elsevier Applied Science, New York, pp. 579-619.

Dunn, B.M. 2002. Structure and Mechanism of the Pepsin Like Family of Aspartic Peptidases. ChemInform 34: 4431-4458.

Feijoo, L., Villa, T.G. 2011. Native and Biotechnologically Engineered Plant Proteases with Industrial Applications. Food and Bioprocess Technology 4: 1-23.

Fonseca, K.C., Morais, N.C.G., Queiroz, M.R., Silva, M.C., Gomes, M.S., Costa, J.O., Mamede, C.C.N., Torres, F.S., Penha-Silva, N., Beletti, M.E., Canabrava, H.A.N., Oliveira, F. 2010. Purification and biochemical characterization of Eumiliin from Euphorbia milii var. hislopii latex. Phytochemistry 71: 708-715.

Freitas, A.C., Macedo, A.C., Malcata, F.X. 2000. Technological and organoleptic issues pertaining to cheeses with denomination of origin manufactured in the Iberian Peninsula from ovine and caprine milks. Food Science and Technology International 6: 351-370.

Gaur, S., Wadhwa, N. 2008. Alkaline protease from senesced leaves of invasive weed Lantana camara. African Journal of Biotechnology 7: 4602-4608.

GMO-Compass. 2012. Information on Genetically modified Organisms. http://www.gmo-compass.org/eng/database/enzymes/83.chymosin.html.

Ha, M., Bekhit, A.E.D.A., Carne, A., Hopkins, D. L. 2012. Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins. Food Chemistry. 134: 95-105

Harboe, M., Broe, M.L., Qvist, K.B. 2010. The Production, Action and Application of Rennet and Coagulants. In: Law,B., Tamine, A. (Eds.), Technology of Cheesemaking. Blackwell Publishing, United Kingdom, pp. 98-129.

Home, D.S., Banks, J.M. 2004. Rennet-induced Coagulation of Milk. In: Patrick F. Fox, P.L.H.M. T.M.C., Timothy, P.G. (Eds.), Cheese: Chemistry, Physics and Microbiology, vol. I. Academic Press, pp. 47-70.

Jacob, M., Jaros, D., Rohm, H. 2011. Recent advances in milk clotting enzymes. International Journal of Dairy Technology 64: 14-33.

Kumar, A., Grover, S., Sharma, J., Batish, V.K. 2010. Chymosin and other milk coagulants: sources and biotechnological interventions. Critical Reviews in Biotechnology 30: 243-258.

Laemmli, U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.

Lopes, A., Teixeira, G., Liberato, M., Pais, M., Clemente, A. 1998. New vegetal sources for milk clotting enzymes. Journal of Molecular Catalysis B-Enzymatic 5: 63-68.

Mazorra-Manzano, M.A., Tanaka, T., Dee, D.R., Yada, R.Y. 2010. Structure-function characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana. Phytochemistry 71: 515-523.

Mohamed-Ahmed, I.A., Morishima, I., Babiker, E.E., Mori, N. 2009. Characterisation of partially purified milk-clotting enzyme from Solanum dubium Fresen seeds. Food Chemistry 116: 395-400.

OECD-FAO. 2011. Agricultural Outlook 2011-2020. Chapter 9, Dairy. http://www.oecd.org/site/oecd-faoagriculturaloutlook/48184340.pdf

Roseiro, L.B., Barbosa, M., Ames, J.M., Wilbey, R.A. 2003. Cheesemaking with vegetable coagulants - The use of Cynara L. for the production of ovine milk cheeses. International Journal of Dairy Technology 56: 76-85.

Sagee, O., Lovatt, C.J. 1991. Putrescine content parallels ammonia and arginine metabolism in developing flowers of the ‘Washington’ navel orange. Journal of the American Society for Horticultural Science 116: 280-285.

Silva, S.V., Barros, R.M., Malcata, F.X. 2002. Hydrolysis of Caseins By Extracts of Cynara Cardunculus Precipitated by Ammonium Sulfate. Journal of Food Science 67: 1746-1751.

Su, H., Huang, M., Wang, H. 2009. Characterization of ginger proteases and their potential as a rennin replacement. Journal of the Science of Food and Agriculture 89: 1178-1185.

Sullivan, G.A., Calkins, C.R. 2010. Application of exogenous enzymes to beef muscle of high and low-connective tissue. Meat Science 85: 730-734.

Vairo, S., Silva, S.V., Cimino, C., Malcata, F.X., Priolo, N. 2008. Hydrolysis of caprine and ovine milk proteins, brought about by aspartic peptidases from Silybum marianum flowers. Food Chemistry 106: 997-1003.

Yadav, R., Patel, A., Jagannadham, M. 2012. Neriifolin S, a dimeric serine protease from Euphorbia neriifolia Linn.: Purification and biochemical characterisation. Food Chemistry 132: 1296-1304.

Yamagata, H., Masuzawa, T., Nagaoka, Y., Ohnishi, T., Iwasaki, T. 1994. Cucumisin, a serine protease from melon fruits, shares structural homology with subtilisin and is generated from a large precursor. Journal of Biological Chemistry 269: 32725-32731.