Producción de lipasa extracelular por Enterococcus faecium E68 en residuos de aceite de oliva como sustrato

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v24i3.1750

Palabras clave:

Enterococcus faecium, actividad de lipasa, residuos de aceite de oliva, lipasa

Resumen

Con las tecnologías verdes se eliminan los daños que ocasionan los desechos agrotecnológicos al medio ambiente. En nuestro estudio, el objetivo era prevenir el daño de los residuos de aceite de oliva al medio ambiente y producir la enzima lipasa, que es un producto biotecnológico importante. E. faecium E68 obtenido de leche y productos lácteos se utilizó en la producción de la enzima lipasa. E. faeciumE68 se desarrolló en medio de producción de lipasa con un 10% de orujo de aceituna, pH 6,5, a 37 oC con agitación a 120 rpm durante 48 h. También se determinó el efecto de la temperatura, el pH del ion metálico, el surfactante y el NaCl. El peso molecular de la enzima lipasa extracelular parcialmente purificada se estimó en alrededor de 19-20 kDa mediante SDS-PAGE. La temperatura óptima fue de 45 °C, mientras que la enzima exhibió una termoestabilidad apreciable reteniendo la actividad a 55°C durante 48 h. La actividad óptima de la lipasa fue a pH10. Los iones 1mM, Ca 2+, Mn2+, Cu2+, Ni2+, Zn2+, Mg2+ y K+ modularon la actividad de la enzima pero fueron inhibidos por Hg2+, SDS y Triton X-100. La enzima es halófila y la sal de NaCl al 25% aumentó la actividad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acu, E., Kılıç, V.,Kıvanç, M.2021. productıon and characterızatıon of extracellular lıpase from Enterococcus durans. The J of Food 46(2):474-487 doi: 10.15237/gida.GD21020.

Adetunji, A.I., Olaniran, A.O. 2021. Production strategies and biotechnological relevance of microbial lipases: a review. Braz J Microbiol 52(3):1257-1269. doi: 10.1007/s42770-021-00503-5.

Amenaghawon, A.N., Orukpe, P.I., Nwanbi-Victor, J., Okedi, M.O., Aburime, E.I., 2022. Enhanced lipase production from a ternary substrate mix of agricultural residues: A case of optimization of microbial inducers and global sensitivity analysis. Bioresour Technol Reports 17, 101000. https://doi.org/10.1016/j.biteb.2022.101000.

Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A., and Domiguez-Espinosa, R. 2004. Production of bioenergy and bio-chemicals from industrial and agricultural wastewater.Trends Biotechnol 22:477 – 485. doi: 10.1016/j.tibtech.2004.07.001.

Arora, P.K. 2013. Staphylococcus lipolyticus sp. nov., a new cold-adapted lipase producing marine species. Annals of Microbiology, 63(3), 913-922. DOI: 10.1007/s13213-012-0544-2

Ayed, L., Assas, N., Sayadi, S. and Hamdi, M. 2005. Involvement oflignin peroxidase in the decolourization of black olive millwastewaters by Geotrichum candidum.Lett Appl Microbiol 40:7 – 11. doi:10.1111/j.1472-765X.2004.01626.x.

Babu, I.S. and Rao, G.H. 2007. Lipase production by Yarrowia lipolytica NCIM 3589 in solid state fermentation using mixed substrate. Research Journal of Microbiology, 2(5), 469-474. DOI:10.3923/JM.2007.469.474.

Bharathi, D., Rajalakshmi, G. 2019. Microbial lipases: an overview of screening, production and purification. Biocatal Agric Biotechnol 22:101368 DOI:10.1016/j.bcab.2019.101368

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.

Brozzoli, V., Crognale, S., Sampedro, I., Federici, F., D’Annibale, A., Petruccioli, M., 2009. Assessment of olive-mill wastewater as a growth medium for lipase production by Candida cylindracea in bench-top reactor. Bioresour. Technol. 100, 3395–3402. https://doi.org/10.1016/j.biortech.2009.02.022.

Couto, S.R., Sanromán, M.A. 2006. Application of solid-state fermentation to food industry—a review. J Food Eng. 76: 291–302. DOI:10.1016/J.JFOODENG.2005.05.022

Dellali, A., Karam, Z.H. and Karam, N.E., 2020. Lipase and esterase activities of lactic acid bacteria isolated from different biotopes. African J of Biotechnol 19(4):156-164. DOI: 10.5897/AJB2020.17106.

Esteban-Torres, M., Mancheno, J. M., de las Rivas, B., Munoz, R. 2015. Characterization of a halotolerant lipase from the lactic acid bacteria Lactobacillus plantarum useful in food fermentations. LWT-Food Sci and Technol, 60(1): 246-252. DOI:10.1016/J.LWT.2014.05.063

Fenice, M., Sermanni G.G., Federici, F., and D’Annibale, A., 2003. Submerged and solid-state bioprocesses forlaccase and manganese-peroxidase production by Panustigrinuson olive-mill wastewater-based media. J Biotechnol 100:77– 85. doi: 10.1016/s0168-1656(02)00241-9.

Filipe D., Fernandes H., Castro C., Peres H., Oliva-Teles A., Belo I., Salgado J.M. 2020.Improved Lignocellulolytic Enzyme Production and Antioxidant Extraction Using Solid-State Fermentation of Olive Pomace Mixed with Winery Waste. Biofuels Bioprod. Biorefining-Biofpr. 14:78–91. doi: 10.1002/bbb.2073.

Fki, I., Allouche, N. and Sayadi, S. 2005.The use of polyphenolic extract,purified hydroxytyrosol and 3,4-dihydroxyphenyl acetic acidfrom olive mill wastewater for the stabilization of refined oils:a potential alternative to synthetic antioxidants. Food Chem 93:197 – 204. DOI:10.1016/J.FOODCHEM.2004.09.014

Hamrouni, R., Claeys Bruno, M., Molinet, J., Masmoudi, A., Roussos, S., Nathalie Dupuy, N.2020. Challenges of Enzymes, Conidia and 6 Pentyl alpha pyrone Production from Solid State Fermentation of Agroindustrial Wastes Using Experimental Design and T. asperellum Strains. Waste and Biomass Valorization 11:5699–5710. https://doi.org/10.1007/s12649-019-00908-2.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-885.

Leite P, Salgado JM, Venâncio A, Domínguez JM, Belo I (2016) Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour Technol 214:737–746.

Leite, P., Sousa, D., Fernandes, H., Marta Ferreira, M., et al 2021. Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Current Opinion in Green and Sustainable Chemistry 27:100407. https://doi.org/10.1016/j.cogsc.2020.100407.

Liu, S.Q., Holland, R., Crow, V.L. 2001. Purification and properties of intracellular esterases from Streptococcus thermophilus. International Dairy Journal 11:27-35. DOI:10.1016/S0958-6946(01)00035-8.

Lopes, M.F.S.,Leitao, A.L., Regalla, M., Marques, J.J.F., Carrondo, M.J.T., and Crespo, M.T.B. 2002. Characterization of a highly thermostable extracellular lipase from Lactobacillus plantarum. Int Jof Food Microbiol 76:107-115. doi: 10.1016/s0168-1605(02)00013-2.

Mahanta, N., Gupta, A., Khare, S.K., 2008. Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresour. Technol. 99, 1729–1735. doi: 10.1016/j.biortech.2007.03.046.

Mantzavinos, D. and Kalogerakis, N., 2005. Treatment of olive milleffluents. Part I. Organic matter degradation by chemical andbiological processes. An overview. Environ Int 31:289 – 295. DOI:10.1016/J.ENVINT.2004.10.005

Meyers, S.A., Cuppett, S.L., Hutkins, R.W. 1996. Lipase Production by Lactic Acid Bacteria and Activity on Butter Oil. Food Microbiology 13(5):383-389. DOI:10.1006/FMIC.1996.0044

Nawani, N., Kaur, J., 2007. Studies on lipolytic isoenzymes from a thermophilic bacillus sp: production, purification and biochemical characterization. Enzym. Microb. Technol. 40, 881–887. doi: 10.1016/j.enzmictec.2006.07.006.

Papadimitriou, V., Maridakis, G.A., Sotiroudis, T.G. and Xenakis, A. 2005.,Antioxidant activity of polar extracts from olive oil and olivemill wastewaters: an EPR and photometric study. Eur J Lipid Sci Technol 107:513 – 520. https://doi.org/10.1002/ejlt.200501165

Rajendran, A., Thangavelu, V., 2012. Optimization and modeling of process parameters for lipase production by Bacillus brevis. Food Bioprocess Technol. 5, 310–322. https://doi.org/10.1007/s11947-010-0387-4

Ramakrishnan V, Goveas LC, Suralikerimath N, Jampani C , Halami PM, Narayan B. 2016. Extraction and purification of lipase from Enterococcus faecium MTCC5695 by PEG/phosphate aqueous-two phase system (ATPS) and its biochemical characterization. Biocatalysis and Agricultural Biotechnology 6:19-27. http://dx.doi.org/10.1016/j.bcab.2016.02.005

Ramakrishnan, V., Goveas, L.C., Narayan,B., and Halami, PM.,2013. Comparison of Lipase Production by Enterococcus faecium MTCC 5695 and Pediococcus acidilactici MTCC 11361 Using Fish Waste as Substrate: Optimization of Culture Conditions by Response Surface Methodology. ISRN Biotechnology ID 980562, http://dx.doi.org/10.5402/2013/980562

Ramakrishnan V, Goveas LC, Halami PM, Narayan B. 2015. Kinetic modeling, production and characterization of an acidic lipase produced by Enterococcus durans NCIM5427 from fish waste. J Food Sci Technol 52(3):1328–1338 DOI 10.1007/s13197-013-1141-5.

Sarika, R., Kalogerakis, N. and Mantzavinos, D., 2005. Treatment of olive mill effluents. Part II. Complete removal of solids by direct flocculation with poly-electrolytes. Environ Int 31:297 – 304. https://doi.org/10.1016/j.envint.2004.10.006.

Suci, M., Arbianti, R., Hermansyah, H., 2018. Lipase production from Bacillus subtilis with submerged fermentation using waste cooking oil. In: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing, p. 12126. https:// doi.org/10.1088/1755-1315/105/1/012126.

Sukohidayat, N.H.E., Zarei, M. , Baharin, B.S., and Manap, M.Y. 2018.Purification and Characterization of Lipase Produced by Leuconostoc mesenteroides Subsp. mesenteroides ATCC 8293 Using an Aqueous Two-Phase System (ATPS) Composed of Triton X-100 and Maltitol . Molecules 23, 1800; doi:10.3390/molecules23071800

Sztajer H., Lunsdorf H., Erdmann H., Menge U., Schmid R., 1992. Purification and properties of lipase from Penicillium simplicissimum. Biochim. Biophys. Acta 1124: 253-261. doi: 10.1016/0005-2760(92)90137-k.

Treichel, H., Oliveira, D., Mazutti M.A., Luccio , M.D., Oliveira, J.V. 2010. A Review on Microbial Lipases Production. Food Bioprocess Technol 3:182–196 DOI 10.1007/s11947-009-0202-2.

Publicado

2022-10-06

Cómo citar

KIVANC, merih, & Acu, E. . (2022). Producción de lipasa extracelular por Enterococcus faecium E68 en residuos de aceite de oliva como sustrato. Biotecnia, 24(3), 87–93. https://doi.org/10.18633/biotecnia.v24i3.1750

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.