Evaluación de consorcios micorrícicos arbusculares nativos en interacción con niveles de fósforo en la promoción del crecimiento y fotosíntesis de Stevia rebaudiana Bertoni
DOI:
https://doi.org/10.18633/biotecnia.v25i1.1765Palabras clave:
hierba dulce, edulcorante natural, asociación, colonización, fosfatoResumen
La creciente demanda de Stevia rebaudiana Bertoni como edulcorante natural, exige la búsqueda de sistemas de producción más sostenibles. El fósforo es indispensable en este cultivo, al estar involucrado en procesos de transformación de energía y biosíntesis de fitoquímicos; su poca disponibilidad afecta la producción y retarda el crecimiento de las plantas. La simbiosis con hongos micorrícicos arbusculares (HMA) representa una vía sostenible para aumentar la producción de los cultivos, gracias a una mejor absorción de nutrientes, particularmente fósforo. El objetivo de este estudio fue evaluar el efecto de consorcios de HMA nativos, provenientes de las localidades: Reserva Cuxtal (RC), Tizimín (TZ) y Colonia Yucatán (CY) pertenecientes al estado de Yucatán, en interacción con porcentajes de fósforo en base a su requerimiento nutricional, sobre parámetros de crecimiento y fotosíntesis en S. rebaudiana a nivel invernadero. Se utilizó un diseño completamente al azar con arreglo bifactorial 4 X 5. Los resultados indicaron que, a bajas concentraciones de fósforo, hay mayor colonización micorrícica. Los tratamientos RC+25 % P y CY+25 % P aumentaron el crecimiento, mejoraron la arquitectura aérea de las plantas y la producción de biomasa, derivado de un mayor contenido de clorofila y mejor tasa fotosintética con respecto a plantas no inoculadas.
Descargas
Citas
Augé, R.M., Toler, H.D., Sams, C.E., Nasim, G. 2008. Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza. 18(3): 115-121.
Abdel-Fattah, G.M., Asrar, A.A., Al-Amri, S.M., Abdel-Salam, E.M. 2014. Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants. Photosynthetica. 52(4): 581-588.
Adolfsson, L., Solymosi, K., Andersson, M.X., Keresztes, Á., Uddling, J., Schoefs, B., Spetea, C. 2015. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production. PLoS One. 10(1): e0115314.
Aguirre-Medina, J.F., Bartolón-Morales, F.R., Martínez-Solis, M., Cadena-Iñiguez, J., Martínez-Sias, V. A. 2020. Growth and sweetener content in Stevia rebaudiana Bert. biofertilized with Rhizophagus intraradices (Schenck & Sm.) Walker ted y Schüßler, and Azospirillum brasilense Tarrand, Krieg y Döbereiner in a substrate with bovine manure added. Japan Journal of Research. 1(3): 1-5.
Ahmad, J., Khan, I., Blundell, R., Azzopardi, J., Mahomoodally, M.F. 2020. Stevia rebaudiana Bertoni.: an updated review of its health benefits, industrial applications and safety. Trends in Food Science & Technology. 100: 177-189.
Alarcón, A., y Ferrera-Cerrato, R. 2003. Aplicación de fósforo e inoculación de hongos micorrízicos arbusculares en el crecimiento y estado nutricional de Citrus volkameriana Tan & Pasq. Terra Latinoamericana. 21(1): 91-99.
Alvarado Carrillo, M., Díaz Franco, A., y Peña del Río, M.D.L.Á. 2014. Productividad de tomate mediante micorriza arbuscular en agricultura protegida. Revista mexicana de ciencias agrícolas. 5(3): 513-518.
Arizaleta, M., y Pire, R. 2008. Respuesta de plántulas de cafeto al tamaño de la bolsa y fertilización con nitrógeno y fósforo en vivero. Agrociencia. 42(1): 47-55.
Aroca, R., Ruiz-Lozano, J.M., Zamarreño, Á.M., Paz, J.A., García-Mina, J.M., Pozo, M.J., López-Ráez, J.A. 2013. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of plant physiology. 170(1): 47-55.
Bécard, G., y Piché, Y. 1992. Establishment of Vesicular-arbuscular Mycorrhiza in Root Organ Culture: Review and Proposed Methodology. Methods in microbiology. 24: 89-108.
Brandle, J.E., y Telmer, P.G. 2007. Steviol glycoside biosynthesis. Phytochemistry. 68(14): 1855-1863.
Cauich Cauich, R., Pérez Gutiérrez, A., Lozano Contreras, M.G., Garruña, R., Ruíz Sánchez, E. 2018. Productividad de Stevia rebaudiana Bertoni con diferentes láminas de riego e inoculantes microbianos. Nova scientia. 10(20): 30-46.
Carballar-Hernández, S., Hernández-Cuevas, L.V., Montaño, N.M., Ferrera-Cerrato, R., Alarcón, A. 2018. Species composition of native arbuscular mycorrhizal fungal consortia influences growth and nutrition of poblano pepper plants (Capsicum annuum L.). Applied Soil Ecology. 130: 50-58.
Ceunen, S., y Geuns, J.M. 2013. Steviol glycosides: chemical diversity, metabolism, and function. Journal of natural products. 76(6): 1201-1228.
Díaz Franco, A., Magallanes Estala, A., Aguado Santacruz, A., Hernández Mendoza, J.L. 2015. Respuesta de la soya a inoculantes microbianos en el norte de Tamaulipas, México. Revista mexicana de ciencias agrícolas. 6(2): 227-238.
Dissanayaka, D.M.S.B., Ghahremani, M., Siebers, M., Wasaki, J., Plaxton, W.C. 2021. Recent insights into the metabolic adaptations of phosphorus-deprived plants. Journal of Experimental Botany. 72(2): 199-223.
Douds Jr, D.D., Lee, J., Rogers, L., Lohman, M.E., Pinzon, N., Ganser, S. 2012. Utilization of inoculum of AM fungi produced on-farm for the production of Capsicum annuum: a summary of seven years of field trials on a conventional vegetable farm. Biological Agriculture & Horticulture. 28(2): 129-145.
Eun-Hwa, L., Ju-Kyeong, E., Kang-Hyeon, K., Ahn-Heum, E. 2013. Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology. 41(3): 121-125.
García, R.D., y Contreras, G.G. 2011. Distribución espacial de la vegetación. Biodiversidad y desarrollo humano en Yucatán. 131-135.
Garruna-Hernandez, R., Orellana, R., Larque-Saavedra, A., Canto, A. 2014. Understanding the physiological responses of a tropical crop (Capsicum chinense Jacq.) at high temperature. PLoS one. 9(11): e111402.
Gerdemann, J.W., y Nicolson, T.H. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society. 46(2): 235-244.
Giovannini, L., Palla, M., Agnolucci, M., Avio, L., Sbrana, C., Turrini, A., Giovannetti, M. 2020. Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: research strategies for the selection of the best performing inocula. Agronomy. 10(1): 106.
Guleria, P., y Yadav, S.K. 2013. Agrobacterium mediated transient gene silencing (AMTS) in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway. PLoS One. 8(9): e74731.
Herrera-Parra, E., Ramos-Zapata, J., Basto-Pool, C., y Cristóbal-Alejo, J. 2021. Sweet pepper (Capsicum annuum) response to the inoculation of native arbuscular mycorrhizal fungi and the parasitism of root-knot Meloidogyne incognita. Revista bio ciencias. 8: e982.
Ioannidi, E., Rigas, S., Tsitsekian, D., Daras, G., Alatzas, A., Makris, A., Kanellis, A. K. 2016. Trichome patterning control involves TTG1 interaction with SPL transcription factors. Plant molecular biology. 92(6): 675-687.
Islam, F., Yasmeen, T., Arif, M. S., Ali, S., Ali, B., Hameed, S., Zhou, W. 2016. Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant growth regulation. 80(1): 23-36.
Jarma, A., Rengifo, T., y Araméndiz-Tatis, H. 2005. Aspectos fisiológicos de estevia (Stevia rebaudiana Bertoni) en el Caribe colombiano: I. Efecto de la radiación incidente sobre el área foliar y la distribución de biomasa. Agronomía Colombiana. 23(2): 207-216.
Jiang, C., Gao, X., Liao, L., Harberd, N.P., Fu, X. 2007. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant physiology. 145(4): 1460-1470.
Kapoor, R., Anand, G., Gupta, P., Mandal, S. 2017. Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza. Phytochemistry Reviews. 16(4): 677-692.
Kapulnik, Y., Delaux, P.M., Resnick, N., Mayzlish-Gati, E., Wininger, S., Bhattacharya, C., Koltai, H. 2011. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta. 233(1): 209-216.
Kouadio, A.N.M.S., Nandjui, J., Krou, S.M., Séry, D.J. M., Nelson, P.N., Zézé, A. 2017. A native arbuscular mycorrhizal fungus inoculant outcompetes an exotic commercial species under two contrasting yam field conditions. Rhizosphere. 4: 112-118.
Kothe, E., y Turnau, K. 2018. Mycorrhizosphere communication: Mycorrhizal fungi and endophytic fungus-plant interactions. Frontiers in Microbiology. 9: 3015.
López-Ráez, J.A., Pozo, M.J., y García-Garrido, J.M. 2011. Strigolactones: a cry for help in the rhizosphere. Botany. 89(8): 513-522.
López-Ráez, J.A., y Pozo, M.J. 2013. Chemical signalling in the arbuscular mycorrhizal symbiosis: biotechnological applications. In Symbiotic endophytes (pp. 215-232). Springer, Berlin, Heidelberg.
Maherali, H. 2014. Is there an association between root architecture and mycorrhizal growth response?. New Phytologist. 204(1): 192-200.
Mandal, S., Evelin, H., Giri, B., Singh, V.P., Kapoor, R. 2013. Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Applied soil ecology. 72: 187-194.
Mandal, S., Upadhyay, S., Singh, V.P., Kapoor, R. 2015. Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes. Plant Physiology and Biochemistry. 89: 100-106.
Márdero, S., Nickl, E., Schmook, B., Schneider, L., Rogan, J., Christman, Z., Lawrence, D. 2012. Sequías en el sur de la península de Yucatán: análisis de la variabilidad anual y estacional de la precipitación. Investigaciones geográficas. (78): 19-33.
Markwell, J., Osterman, J.C., y Mitchell, J.L. 1995. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis research. 46(3): 467-472.
Mostafa, H. S. 2019. Impact of NPK fertilization and lithovit rates on growth, yield components and chemical constituents of Stevia rebaudiana Bert. Plant. Middle East Journal of Applied Sciences. 9(02): 412-420.
McGonigle, T.P., Miller, M.H., Evans, D.G., Fairchild, G.L., y Swan, J.A. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New phytologist. 115(3): 495-501.
Nouri, E., Breuillin-Sessoms, F., Feller, U., Reinhardt, D. 2014. Correction: Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One. 10(4): e0127472.
Oliveira, R.S., Ma, Y., Rocha, I., Carvalho, M.F., Vosátka, M., y Freitas, H. 2016. Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant Coriandrum sativum L. Journal of Toxicology and Environmental Health, Part A. 79(7): 320-328.
Pal, P.K., Prasad, R., Singh, R.D. 2015. Evaluating the non-destructive method for determining the chlorophyll and nitrogen content in Stevia rebaudiana (Bertoni) leaf. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology. 149(1): 131-135.
Pan, J., Huang, C., Peng, F., Zhang, W., Luo, J., Ma, S., Xue, X. 2020. Effect of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria (PGPR) inoculations on Elaeagnus angustifolia L. in saline soil. Applied Sciences. 10(3): 945.
Phillips, J.M., y Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society. 55(1): 158-161.
Quiñones-Aguilar, E.E., López-Pérez, L., Rincón-Enríquez, G. 2014. Dinámica del crecimiento de papaya por efecto de la inoculación micorrízica y fertilización con fósforo. Revista Chapingo. Serie horticultura. 20(2): 223-237.
Rameau, C., Bertheloot, J., Leduc, N., Andrieu, B., Foucher, F., Sakr, S. 2015. Multiple pathways regulate shoot branching. Frontiers in plant science. 5: 741.
Rapparini, F., Llusià, J., y Peñuelas, J. 2008. Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biology. 9(S 01): e20-e32.
Reyes-Ramírez, A., López-Arcos, M., Ruiz-Sánchez, E., Latournerie-Moreno, L., Pérez-Gutiérrez, A., Lozano-Contreras, M.G., Zavala-León, M.J. 2014. Efectividad de inoculantes microbianos en el crecimiento y productividad de chile habanero (Capsicum chinense Jacq.). Agrociencia. 48(3): 285-294.
Richardson, A.E. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology. 28(9): 897-906.
Richardson, A.D., Duigan, S.P., y Berlyn, G.P. 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New phytologist. 153(1): 185-194.
Ruiz-Lozano, J.M., y Aroca, R. 2010. Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In Arbuscular mycorrhizas: physiology and function (pp. 239-256). Springer, Dordrecht.
Sarmiento-López, L.G., López-Meyer, M., Sepúlveda-Jiménez, G., Cárdenas, L., Rodríguez-Monroy, M. 2021. Arbuscular mycorrhizal symbiosis in Stevia rebaudiana increases trichome development, flavonoid and phenolic compound accumulation. Biocatalysis and Agricultural Biotechnology. 31: 101889.
Sarmiento-López, L.G., López-Meyer, M., Sepúlveda-Jiménez, G., Cárdenas, L., Rodríguez-Monroy, M. 2020. Photosynthetic performance and stevioside concentration are improved by the arbuscular mycorrhizal symbiosis in Stevia rebaudiana under different phosphate concentrations. PeerJ. 8: e10173.
Sieverding, E. 1990. Ecology of VAM fungi in tropical agrosystems. Agriculture, Ecosystems & Environment. 29(1-4): 369-390.
Shu, B., Wang, P., Xia, R.X. 2014. Effects of mycorrhizal fungi on phytate-phosphorus utilization in trifoliate orange (Poncirus trifoliata L. Raf) seedlings. Acta physiologiae plantarum. 36(4): 1023-1032.
Smith, S.E., y Smith, A.F. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual review of plant biology. 62: 227-250.
Smith, S.E., Jakobsen, I., Gronlund, M., Smith, F.A. 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant physiology. 156(3): 1050-1057.
Tarraf, W., Ruta, C., De Cillis, F., Tagarelli, A., Tedone, L., De Mastro, G. 2015. Effects of mycorrhiza on growth and essential oil production in selected aromatic plants. Italian Journal of Agronomy. 10(3): 160-162.
Tavarini, S., Passera, B., Martini, A., Avio, L., Sbrana, C., Giovannetti, M., Angelini, L.G. 2018. Plant growth, steviol glycosides and nutrient uptake as affected by arbuscular mycorrhizal fungi and phosphorous fertilization in Stevia rebaudiana Bert. Industrial Crops and Products. 111: 899-907.
Tavarini, S., Pagano, I., Guidi, L., Angelini, L.G. 2016. Impact of nitrogen supply on growth, steviol glycosides and photosynthesis in Stevia rebaudiana Bertoni. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology. 150(5): 953-962.
Tedone, L., Ruta, C., De Cillis, F., De Mastro, G. 2020. Effects of Septoglomus viscosum inoculation on biomass yield and steviol glycoside concentration of some Stevia rebaudiana chemotypes. Scientia Horticulturae. 262: 109026.
Tekaya, M., Mechri, B., Mbarki, N., Cheheb, H., Hammami, M., Attia, F. 2017. Arbuscular mycorrhizal fungus Rhizophagus irregularis influences key physiological parameters of olive trees (Olea europaea L.) and mineral nutrient profile. Photosynthetica. 55(2): 308-316.
Trejo, D., Ferrera-Cerrato, R., García, R., Varela, L., Lara, L., Alarcón, A. 2011. Efectividad de siete consorcios nativos de hongos micorrízicos arbusculares en plantas de café en condiciones de invernadero y campo. Revista chilena de historia natural. 84(1): 23-31.
Uçar, E., Turgut, K., Özyiğit, Y., Özek, T., Özek, G. 2018. The effect of different nitrogen levels on yield and quality of stevia (Stevia rebaudiana Bert.). Journal of plant nutrition. 41(9): 1130-1137.
Vafadar, F., Amooaghaie, R., y Otroshy, M. 2014. Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions. 9(1): 128-136.
Vosátka, M., Látr, A., Gianinazzi, S., Albrechtová, J. 2012. Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis. 58(1): 29-37.
Waller, L.P., Felten, J., Hiiesalu, I., Vogt-Schilb, H. 2018. Sharing resources for mutual benefit: crosstalk between disciplines deepens the understanding of mycorrhizal symbioses across scales. New Phytologist. 217(1): 29-32.
Wölwer-Rieck, U. 2012. The leaves of Stevia rebaudiana (Bertoni), their constituents and the analyses thereof: a review. Journal of agricultural and food chemistry. 60(4): 886-895.
Wright, D.P., Scholes, J. D., Read, D. J., Rolfe, S. A. 2005. European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New phytologist. 167(3): 881-896.
Yao, Q., Wang, L.R., Zhu, H.H., Chen, J.Z. 2009. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Scientia Horticulturae. 121(4): 458-461.
Zhu, X. Q., Tang, M., Zhang, H.Q. 2017. Arbuscular mycorrhizal fungi enhanced the growth, photosynthesis, and calorific value of black locust under salt stress. Photosynthetica. 55(2): 378-385.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)