Inhibition of bacterial adherence to vascular catheters by the antimicrobial peptide AP7121

Antimicrobial peptide AP7121 in catheters

Authors

  • S Lissarrague Faculty of Medical Sciences, National University of the Center of the Province of Buenos Aires, Argentina https://orcid.org/0009-0004-0524-2620
  • L Schofs Laboratory of Pharmacology, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires Aires, Argentina- CIVETAN- CONICET https://orcid.org/0000-0002-3955-601X
  • M Bistoletti Faculty of Medical Sciences, National University of the Center of the Province of Buenos Aires, Argentina https://orcid.org/0009-0001-2233-1201
  • L García Allende Faculty of Medical Sciences, National University of the Center of the Province of Buenos Aires, Argentina https://orcid.org/0009-0007-0980-0716
  • A Lallée Faculty of Medical Sciences, National University of the Center of the Province of Buenos Aires, Argentina https://orcid.org/0009-0008-9773-4604
  • B Baldaccini Faculty of Medical Sciences, National University of the Center of the Province of Buenos Aires, Argentina
  • S Sánchez Bruni Laboratory of Pharmacology, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires Aires, Argentina- CIVETAN- CONICET https://orcid.org/0000-0002-9598-6786
  • Sparo Faculty of Medical Sciences, National University of the Center of the Province of Buenos Aires, Argentina https://orcid.org/0000-0002-0768-894X

DOI:

https://doi.org/10.18633/biotecnia.v25i2.1858

Keywords:

antimicrobial peptide AP7121, inhibition, vascular catheter, bacterial adherence

Abstract

Healthcare-associated bloodstream infections are the leading cause of morbidity and mortality in hospitalized patients. Vascular catheter-related infection is its main source. Gram-positive bacteria especially Staphylococcus spp., are the most prevalent etiological agents. The aim was to assess the inhibitory activity of the AP7121 on the Staphylococcus aureus adherence in vascular catheters. The biofilm-producer strain S. aureus ATCC 35556 (SA) was used. MIC AP7121 for SA was performed. 20 mm segments of the vascular catheter (n=3) were inoculated with 104 UFC mL-1 of SA. Three different treatment schemes (A: simultaneous, B: previous, and C: following bacterial challenge) using 1 x MIC AP7121 were tested. Control groups were included in each scheme. The MICAP7121 was 0.48 mg/L. A reduction of 2log10 representing a decrease of 99 % of viable SA cells was achieved with schemes A and B. The post-challenge treatment with AP7121 (scheme C) produced a reduction of 1log10 representing a decrease of 90 % of viable SA cells. The results observed in this work suggest a fast antimicrobial activity of AP7121 that could be beneficial to reduce bacterial adherence on medical devices such as vascular catheters

Downloads

Download data is not yet available.

References

Bower, C.K., Bothwell, M.K. y McGuire, J. 2001. Lantibiotics as surface active agents for biomedical applications. Colloids Surfaces B: Biointerfaces. 22:259–265. DOI: https://doi.org/10.1016/S0927-7765(01)00199-0

Bower, C.K., Daeschel, M.A. y McGuire, J. 1998. Protein antimicrobial barriers to bacterial adhesion. Journal of Dairy Science. 81:2771–2778. DOI: https://doi.org/10.3168/jds.S0022-0302(98)75835-7

Cavera, V.L., Arthur, T.D., Kashtanov, D. y Chikindas, M.L. 2015. Bacteriocins and their position in the next wave of conventional antibiotics. International Journal of Antimicrobial Agents. 46, 494–501. DOI: https://doi.org/10.1016/j.ijantimicag.2015.07.011

Clinical and Laboratory Standards Institute (CLSI). 2019. Performance standards for antimicrobial susceptibility testing, 29th ed. CLSI Document M100. Wayne, PA: CLSI.

Dawson, R.M.C., Elliot, D.C., Elliot, W.H. y Jones, K.M. 1969. Data for Biochemical Research, Clarendon Press, p.622. Oxford.

Delpech, G., Bistoletti, M., Ceci, M., Lissarrague, S., Bruni, S.S. y Sparo, M. 2017. Bactericidal activity and synergy studies of peptide AP-CECT7121 against multi-resistant bacteria isolated from human and animal soft-tissue infections. Probiotics and Antimicrobial Proteins. 9: 355-362. DOI: https://doi.org/10.1007/s12602-017-9289-3

Delpech, G., Ceci, M., Lissarrague, S., García Allende, L., Baldaccini, B. y Sparo, M. 2020. In vitro activity of antimicrobial peptide AP7121 against human methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilm producers. Biofouling. 36 (2): 257-267. DOI: https://doi.org/10.1080/08927014.2020.1756266

Delpech, G., Hebert, E.M., Sparo, M. y Saavedra, L. 2019. Draft genome sequence of Enterococcus faecalis strain CECT7121, a corn silage isolate with antibacterial activity against Gram-positive pathogens”. Microbiology Resource Announcements. 8:e00245-19. DOI: https://doi.org/10.1128/MRA.00245-19

Donelli, G. y Francolini, I. 2001. Efficacy of antiadhesive, antibiotic, and antiseptic coating in preventing catheter-related infections. Journal of Chemotherapy. 13:56–67. DOI: https://doi.org/10.1179/joc.2001.13.6.595

Dosler, S. y Mataraci, E. 2013. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides. 49: 53-8. DOI: https://doi.org/10.1016/j.peptides.2013.08.008

Fontana, M.B., de Bastos Mdo, C. y Brandelli, A. 2006. Bacteriocins Pep5 and epidermin inhibit Staphylococcus epidermidis adhesion to catheters. Current Microbiology. 52(5):350-3. DOI: https://doi.org/10.1007/s00284-005-0152-5

Gahlot, R., Nigam, C., Kumar, V., Yadav, G. y Anupurba, S. 2014. Catheter-related bloodstream infections. International Journal of Critical Illness and Injury Science. 4(2):162-7. DOI: https://doi.org/10.4103/2229-5151.134184

Godoy-Santos, F., Pitts, B., Stewart, P.S. y Mantovani, H.C. 2018. Nisin penetrates Staphylococcus aureus biofilms but shows differences in killing effects against sessile and planktonic cells. Biorxiv. 303636. DOI: https://doi.org/10.1101/303636

Hassan, M., Kjos, M., Nes, I. F., Diep, D. B. y Lotfipour, F. 2012. Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. Journal of Applied Microbiology. 113(4): 723-736. DOI: https://doi.org/10.1111/j.1365-2672.2012.05338.x

Inoue, H. y Minghui, R. 2017. Resistencia a los antimicrobianos: del compromiso político a la acción nacional. Boletín de la Organización Mundial de la Salud. 95: 242.

Nan, L., Yang, K. y Ren, G. 2015. Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus. Material Science and Engineering C. 51: 356-61. DOI: https://doi.org/10.1016/j.msec.2015.03.012

Pitiriga, V., Kanellopoulos, P., Bakalis, I., Kampos, E., Sagris, I., Saroglous, G. y Tsakris, A. 2020. Central venous catheter-related bloodstream infection and colonization: the impact of insertion site and distribution of multidrug-resistant pathogens. Antimicrobial Resistance and Infection Control. 9: 189-197. DOI: https://doi.org/10.1186/s13756-020-00851-1

Programa Nacional de Vigilancia de Infecciones Hospitalarias de Argentina. (2017). Estudio nacional de diagnóstico institucional y prevalencia de infecciones asociadas al cuidado de la salud de hospitales de Argentina. Disponible en: www. vihda.com.ar.

Seidi, K., Stucki, M., Ruegg, M., Goerke, C., Wolz, C. y Harris, L. 2008. Staphylococcus aureus CcpA affects biofilm formation. Infection and Immunity. 76: 2044-2050. DOI: https://doi.org/10.1128/IAI.00035-08

Sherertz, R.J., Raad, I., Belani, A., Koo, L.C., Rand, K.H., Pickett, D.L., Straub, S.A. y Fauerbach, L.L. 1990. Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. Journal of Clinical Microbiology. 28: 76-82. DOI: https://doi.org/10.1128/jcm.28.1.76-82.1990

Sparo, M.D., Castro, M.S., Andino, P.J., Lavigne, M.V., Ceriani, C., Gutiérrez, G.L., Fernández, M.M., De Marzi, M.C., Malchiodi, E.L. y Manghi, M.A. 2006. Partial characterization of enterocin MR99 from a corn silage isolate of l Enterococcus faecalis. Journal of Applied Microbiology.100: 123-134. DOI: https://doi.org/10.1111/j.1365-2672.2005.02752.x

Sparo, M.D., Jones, D.G. y Sánchez Bruni, S.F. 2009. Assessment of the in vitro efficacy of the novel antimicrobial peptide CECT7121 against human Gram-positive bacteria from serious infections refractory to treatment. Chemotherapy. 55: 270-7. DOI: https://doi.org/10.1159/000223069

Sparo, M. 2006. Investigación de bacteriocinas de bacterias ácido-lácticas en el Partido de Tandil. Tesis Doctoral. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina.

Wallace, A., Albadawi, H., Patel, N., Khademhosseini, A., Zhang, Y. S., Naidu, S.y Oklu, R. 2017. Anti-fouling strategies for central venous catheters. Cardiovascular Diagnosis and Therapy. 7(Suppl 3): S246. DOI: https://doi.org/10.21037/cdt.2017.09.18

Published

2023-05-11

How to Cite

Lissarrague, S., Schofs, L. ., Bistoletti, M., García Allende, L., Lallée, A., Baldaccini, B., … Sparo, M. (2023). Inhibition of bacterial adherence to vascular catheters by the antimicrobial peptide AP7121: Antimicrobial peptide AP7121 in catheters. Biotecnia, 25(2), 165–168. https://doi.org/10.18633/biotecnia.v25i2.1858

Issue

Section

Research Articles

Metrics

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.