Efecto de iones y concentración de proteína Ps19, una proteína de la concha de Pteria sterna, en los polimorfos de carbonato de calcio
Polimorfos de carbonato de calcio en Concha Nácar
DOI:
https://doi.org/10.18633/biotecnia.v25i2.1885Palabras clave:
Molusco, Proteína de la concha, carbonato de calcio, cristalizacion, nácarResumen
El carbonato de calcio está presente en muchas estructuras biológicas, como la concha de bivalvo, que se compone principalmente de dos polimorfos de CaCO3: calcita y aragonito. Sin embargo, existen otras formas de carbonato de calcio como vaterita y carbonato de calcio amorfo (ACC) que no se reportan comúnmente. La selección de polimorfos está influenciada por la concentración de sal, los iones cofactores y la presencia de proteínas de la matriz de la cubierta (SMP) que regulan la deposición de carbonato de calcio, entre otros factores. En este estudio, se evaluó la cristalización in vitro de carbonato de calcio de cuatro soluciones salinas diferentes en dos molaridades con diferentes concentraciones la proteína Ps19, una proteína extraída insoluble de la concha de Pteria sterna, descrita anteriormente como promotora de la cristalización de plaquetas de aragonita. Las cristalizaciones in vitro mostraron que Ps19 es capaz de inducir la deposición de aragonita y calcita de forma dependiente de la dosis, pero también de vaterita en determinadas condiciones, actuando como promotor e inhibidor de la cristalización. Los resultados contribuyen a comprender cómo Ps19 controla la precipitación de polimorfos de calcio en el crecimiento de la capa prismática y de nácar de la concha de P. sterna.
Descargas
Citas
Addadi, L., Joester, D., Nudelman, F. y Weiner, S. 2006. Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chemistry 12:980-987.
Addadi, L., Raz, S. y Weiner, S. 2003. Taking advantage of disorder:Amorphus calcium carbonate and its roles in biomineralization. Advanced Materials 15:959-970.
Arroyo-Loranca, R. G., Hernandez-Saavedra, N. Y., Hernandez-Adame, L. y Rivera-Perez, C. 2020. Ps19, a novel chitin binding protein from pteria sterna capable to mineralize aragonite plates in vitro. PLoS One 15:1-15.
Bahn, S. Y., Jo, B. H., Choi, Y. S. y Cha, H. J. 2017. Control of nacre biomineralization by pif80 in pearl oyster. Sci. Adv. 3:e1700765.
Bahn, S. Y., Jo, B. H., Hwang, B. H., Choi, Y. S. y Cha, H. J. 2015. Role of pif97 in nacre biomineralization: In vitro characterization of recombinant pif97 as a framework protein for the association of organic–inorganic layers in nacre. Crystal Growth & Design 15:3666-3673.
Davis, K. J., Dove, P. M. y De Yoreo, J. J. 2000. The role of mg2+ as an impurity in calcite growth. Science 290:1134-1137.
Declet, A., Reyes, E. y Suárez, O. M. 2016. Calcium carbonate precipitation : A review of the carbonate crystallization process and applications in bioinspired composites. Reviews on Advanced Materials Science 44:87-107.
Demichelis, R., Schuitemaker, A., Garcia, N. A., Koziara, K. B., De La Pierre, M., Raiteri, P. y Gale, J. D. 2018. Simulation of crystallization of biominerals. Annual Review of Materials Research 48:327-352.
Du, J., Liu, C., Xu, G., Xie, J., Xie, L. y Zhang, R. 2018. Fam20c participates in the shell formation in the pearl oyster, pinctada fucata. Sci. Rep. 8:3563.
Evans, J. S. 2019. Composite materials design: Biomineralization proteins and the guided assembly and organization of biomineral nanoparticles. Materials 12:581-591.
Green, M. R., Pastewka, J. V. y Peacock, A. C. 1973. Differential staining of phosphoproteins on polyacrylamide gels with a cationic carbocyanine dye. Analytical Biochemistry 56:43-51.
Han, D., Kim, D., Choi, S. y Yoh, J. J. 2017. A novel classification of polymorphs using combined libs and raman spectroscopy. Current Optics and Photonics 1:402-411.
Huang, J., Liu, C., Xie, L. y Zhang, R. 2018. Amorphous calcium carbonate: A precursor phase for aragonite in shell disease of the pearl oyster. Biochemical and Biophysical Research Communications 497:102-107.
Kocot, K. M., Aguilera, F., McDougall, C., Jackson, D. J. y Degnan, B. M. 2016. Sea shell diversity and rapidly evolving secretomes: Insights into the evolution of biomineralization. Frontiers in Zoology 13:23.
Kong, J., Liu, C., Yang, D., Yan, D., Chen, Y., Liu, Y., Zheng, G., Xie, L. y Zhang, R. 2019. A novel basic matrix protein of pinctada fucata, pnu9, functions as inhibitor during crystallization of aragonite. CrystEngComm 21:1250-1261.
Kong, Y., Jing, G., Yan, Z., Li, C., Gong, N., Zhu, F., Li, D., Zhang, Y., Zheng, G., Wang, H., Xie, L. y Zhang, R. 2009. Cloning and characterization of prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer formation from the oyster pinctada fucata. Journal of Biological Chemistry 284:10841-10854.
Laemmli, U. K. 1970. Cleavage of structural poteins during the assembly of the head of bacteriophage t4. Nature 227:680-685.
Levi-Kalisman, Y., Falini, G., Addadi, L. y Weiner, S. 2001. Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-tem. Journal of Structural Biology 135:8-17.
Liang, J., Xie, J., Gao, J., Xu, C.-Q., Yan, Y., Jia, G.-C., Xiang, L., Xie, L.-P. y Zhang, R.-Q. 2016. Identification and characterization of the lysine-rich matrix protein family in pinctada fucata: Indicative of roles in shell formation. Marine Biotechnology 18:645-658.
Loste, E., Wilson, R., Seshadri, R. y Meldrum, F. C. 2003. The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. Journal of Crystal Growth 254:206-218.
Ma, Y. y Feng, Q. 2015. A crucial process: Organic matrix and magnesium ion control of amorphous calcium carbonate crystallization on b-chitin film. CrystEngComm 17:32-39.
Meldrum, F. C. y Colfen, H. 2008. Controlling mineral morphologies and structures in biological and synthetic systems. Chemical Reviews 108:4332-4432.
Montagnani, C., Marie, B., Marin, F., Belliard, C., Riquet, F., Tayalé, A., Zanella-Cleon, I., Fleury, E., Gueguen, Y., Piquemal, D. y Cochennec-Laureau, N. 2011. Pmarg-pearlin is a matrix protein involved in nacre framework formation in the pearl oyster pinctada margaritifera. ChemBioChem 12:2033-2043.
Nassif, N., Pinna, N., Gehrke, N., Antonietti, M., Jager, C. y Colfen, H. 2005. Amorphous layer around aragonite platelets in nacre. Proceedings of the National Academy of Sciences of the United States of America 102:12653-12655.
Nielsen, M. R., Sand, K. K., Rodriguez-Blanco, J. D., Bovet, N., Generosi, J., Dalby, K. N. y Stipp, S. L. S. 2016. Inhibition of calcite growth: Combined effects of mg2+ and so42–. Crystal Growth & Design 16:6199-6207.
Pan, C., Fang, D., Xu, G., Liang, J., Zhang, G., Wang, H., Xie, L. y Zhang, R. 2014. A novel acidic matrix protein, pfn44, stabilizes magnesium calcite to inhibit the crystallization of aragonite. Journal of Biological Chemistry 289:2776-2787.
Politi, Y., Metzler, R. A., Abrecht, M., Gilbert, B., Wilt, F. H., Sagi, I., Addadi, L., Weiner, S. y Gilbert, P. U. P. A. 2008. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proceedings of the National Academy of Sciences of the United States of America 105:17362-17366.
Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. U. P. A. y Navrotsky, A. 2010. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proceedings of the National Academy of Sciences of the United States of America 107:16438-16443.
Raz, S., Weiner, S. y Addadi, L. 2000. Formation of high-magnesian calcites via an amorphous precursor phase: Possible biological implications. Advanced Materials 12:38-42.
Rousseau, M., Meibom, A., Geze, M., Bourrat, X., Angellier, M. y Lopez, E. 2009. Dynamics of sheet nacre formation in bivalves. Journal of Structural Biology 165:190-195.
Soldati, A. L., Jacob, D. E., Wehrmeister, W. y Hofmeister, W. 2008. Structural characterization and chemical composition of aragonite and vaterite in freshawater cultured pearls. Mineralogical Magazine 72:579-592.
Song, X., Liu, Z., Wang, L. y Song, L. 2019. Recent advances of shell matrix proteins and cellular orchestration in marine molluscan shell biomineralization. Frontiers in Marine Science 6.
Song, X., Wang, X., Li, L. y Zhang, G. 2014. Identification two novel nacrein-like proteins involved in the shell formation of the pacific oyster crassostrea gigas. Molecular Biology Reports 41:4273-4278.
Suzuki, M., Murayama, E., Inoue, H., Ozaki, N., Tohse, H., Kogure, T. y Nagasawa, H. 2004. Characterization of prismalin-14, a novel matrix protein from the prismatic layer of the japanese pearl oyster (pinctada fucata). Biochemical Journal 382:205-213.
Tobler, D. J., Rodriguez-Blanco, J. D., Dideriksen, K., Bovet, N., Sand, K. K. y Stipp, S. L. S. 2015. Citrate effects on amorphous calcium carbonate (acc) structure, stability, and crystallization. Advanced Functional Materials 25:3081-3090.
Weiss, I. M., Kaufmann, S., Mann, K. y Fritz, M. 2000. Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc haliotis laevigata. Biochemical and Biophysical Research Communications 267:17-21.
Wilt, F. H. 2005. Developmental biology meets materials science: Morphogenesis of biomineralized structures. Developmental Biology 280:15-25.
Wolf, S., Marin, F., Marie, B., Hamada, S. B., Silva, P., Montagnani, C., Joubert, C., Piquemal, D. y Le Roy, N. 2013. Shellome: Proteins involved in mollusc shell biomineralization - diversity, functions. In: S. Watabe, K. Maeyama & H. Nagasawa, editors. Recents advances in pearl research: Terrapub. pp. 149-166.
Xie, J., Liang, J., Sun, J., Gao, J., Zhang, S., Liu, Y., Xie, L. y Zhang, R. 2016. Influence of the extrapallial fluid of pinctada fucata on the crystalization of calcium carbonate and shell biomineralization. Crystal Growth & Design 16:672-680.
Xu, N., Li, Y., Zheng, L., Gai, Y., Yin, H., Zhao, J., Chen, Z., Chen, J. y Chen, M. 2014. Synthesis and application of magnesium amorphous calcium carbonate for removal of high concentration of phosphate. Chemical Engineering Journal 251:102-110.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)