Extractos vegetales en el crecimiento y concentración nutrimental de hojas de lechuga (Lactuca sativa)

Autores/as

  • Disraeli Eron Moreno-Guerrero
  • SARA MONZERRAT RAMIREZ-OLVERA Colegio de Postgraduados
  • Heidi Liset Ojeda-Salgado Universidad Autónoma Chapingo
  • Claudio Arturo Pérez-Mercado Universidad Autónoma Chapingo
  • Libia Iris Trejo-Téllez Colegio de Postgraduados, Campus Montecillo

DOI:

https://doi.org/10.18633/biotecnia.v26.1929

Palabras clave:

Aspersión foliar, Cultivar Parris, macro y micronutrimentos

Resumen

El uso de extractos vegetales como bioestimulantes, es una alternativa en la producción agrícola. El objetivo de esta investigación fue evaluar la aspersión foliar de extractos acuosos de nopal (Opuntia ficus-indica) y cilantro (Coriandrum sativum), en el crecimiento y concentración nutrimental de hojas de lechuga. Plántulas de 30 d de edad, se asperjaron con los tratamientos durante 28 días, en intervalos de siete días. La aspersión de los extractos no modificó la altura de planta, ni el número de hojas. El extracto de nopal incrementó la concentración de P, Fe y Zn; mientras que el extracto de cilantro, aumentó la concentración de N, P, Mg, Fe, Cu, Mn, B y Zn. Los extractos vegetales evaluados no tienen influencia en el crecimiento, pero sí en la concentración de nutrimentos en hojas de lechuga.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abd El–Hamied, S.A. and El-Amary, E.I. 2015. Improving growth and productivity of “pear” trees using some natural plants extracts under north sinai conditions. Journal of Agriculture and Veterinary Sci-ence. 8: 1-9.

Ali, E.F., Hassan, F.A.S. and Elgimabi, M. 2018. Improving the growth, yield and volatile oil content of Pelargonium graveolens L. Herit by foliar application with moringa leaf extract through motivating physiological and biochemical parameters. South African Journal of Botany. 119: 383-389. DOI: https://doi.org/10.1016/j.sajb.2018.10.003

Ali, M., Cheng, Z.H., Hayat, S., Ahmad, H., Ghani, M.I. and Tao, L.I.U. 2019. Foliar spraying of aqueous garlic bulb extract stimulates growth and antioxidant enzyme activity in eggplant (Solanum melongena L.). Journal of Integrative Agriculture. 18: 1001-1013. DOI: https://doi.org/10.1016/S2095-3119(18)62129-X

Ashraf, R., Sultana, B., Iqbal, M. and Mushtaq, M. 2016. Variation in biochemical and antioxidant attributes of Raphanus sativus in response to foliar application of plant leaf extracts as plant growth regulator. Journal of Genetic Engineering and Biotechnology. 14: 1-8. DOI: https://doi.org/10.1016/j.jgeb.2016.08.003

Barba, F.J., Garcia, C., Fessard, A., Munekata, P.E.S, Lorenzo, J. M., Aboudia, A., Ouadiad, A. and Remize, F. 2022. Opuntia ficus indica edible parts: A food and nutritional security perspective. Food Reviews International. 38: 930-952. DOI: https://doi.org/10.1080/87559129.2020.1756844

Clarke, A.E., Anderson, R.L. and Stone, B.A. 1979. Form and function of arabinogalactans and arabi-nogalactan-proteins. Phytochemistry. 18: 521-540. DOI: https://doi.org/10.1016/S0031-9422(00)84255-7

Culotta, V.C., Yang, M. and O'Halloran, T.V. 2006. Activation of superoxide dismutases: putting the metal to the pedal. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 1763: 747-758. DOI: https://doi.org/10.1016/j.bbamcr.2006.05.003

Culver, M., Fanuel, T. and Chiteka, A.Z. 2012. Effect of moringa extract on growth and yield of tomato. Greener Journal of Agricultural Sciences. 2: 207-211.

Elzaawely, A.A., Ahmed, M.E., Maswada, H.F., Al-Araby, A.A. and Xuan, T.D. 2018. Growth traits, physiological parameters and hormonal status of snap bean (Phaseolus vulgaris L.) sprayed with garlic cloves extract. Archives of Agronomy and Soil Science. 64: 1068-1082. DOI: https://doi.org/10.1080/03650340.2017.1410543

Hassanein, R.A., Hussein, O.S., Abdelkader, A.F., Farag, I.A., Hassan, Y.E. and Ibrahim, M. 2021. Metabolic activities and molecular investigations of the ameliorative impact of some growth biostim-ulators on chilling-stressed coriander (Coriandrum sativum L.) plant. BMC Plant Biology. 21: 1-23. DOI: https://doi.org/10.1186/s12870-021-03021-6

Hernández-Becerra, E., Aguilera-Barreiro, D.A., Contreras-Padilla, M., Pérez-Torrero, E. and Rodriguez-Garcia, M.E. 2022. Nopal cladodes (Opuntia Ficus Indica): Nutritional properties and functional potential. Journal of Functional Foods. 95: 105183. DOI: https://doi.org/10.1016/j.jff.2022.105183

López-Martínez, S., Chan-Jiménez, J.E., Hernández-López, E.S. y Rodríguez-Luna, A.R. 2023. Oreganón, perejil, cilantro, hierbabuena y albahaca a través de difracción de rayos x. Biotecnia. 25: 113-124. DOI: https://doi.org/10.18633/biotecnia.v25i3.1862

Manzanarez-Tenorio, L.E., Ruiz-Cruz, S., Cira-Chávez, L.A., Estrada-Alvarado, M.I., Márquez-Ríos, E., Del-Toro-Sánchez, C.L. y Suárez-Jiménez, G.M. 2022. Caracterización fisicoquímica, actividad antioxidante y contenido de fenoles y flavonoides totales de nopal morado (Opuntia gosseliniana) en dos etapas de coloración. Biotecnia. 24: 101-106. DOI: https://doi.org/10.18633/biotecnia.v24i3.1662

Mkindi, A.G., Tembo, Y.L., Mbega, E.R., Smith, A.K., Farrell, I.W., Ndakidemi, P.A., Stevenson, P.C. and Belmain, S.R. 2020. Extracts of common pesticidal plants increase plant growth and yield in common bean plants. Plants. 9: 149. DOI: https://doi.org/10.3390/plants9020149

Mohammadipour, N. and Souri, M.K. 2019. Beneficial effects of glycine on growth and leaf nutrient concentrations of coriander (Coriandrum sativum) plants. Journal of Plant Nutrition. 42: 1637-1644. DOI: https://doi.org/10.1080/01904167.2019.1628985

Mutale-Joan, C., Redouane, B., Najib, E., Yassine, K., Lyamlouli, K., Laila, S., Zeroual, Y. and Hicham, E.A. 2020. Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Scientific Reports. 10: 1-12. DOI: https://doi.org/10.1038/s41598-020-59840-4

Nasir, M., Khan, A.S., Basra, S.A. and Malik, A.U. 2016. Foliar application of moringa leaf extract, potassium and zinc influence yield and fruit quality of ‘Kinnow’mandarin. Scientia Horticulturae. 210: 227-235. DOI: https://doi.org/10.1016/j.scienta.2016.07.032

Ndubuaku, U.M., Uchenna, N.V., Baiyeri, K. P. and Ukonze, J. 2015. Anti-nutrient, vitamin and other phytochemical compositions of old and succulent moringa (Moringa oleifera Lam) leaves as influenced by poultry manure application. African Journal of Biotechnology. 14: 2502-2509. DOI: https://doi.org/10.5897/AJB2015.14848

Nguyen, D.T., Kitayama, M., Lu, N. and Takagaki, M. 2020. Improving secondary metabolite accumula-tion, mineral content, and growth of coriander (Coriandrum sativum L.) by regulating light quality in a plant factory. The Journal of Horticultural Science and Biotechnology. 95: 356-363. DOI: https://doi.org/10.1080/14620316.2019.1677510

Otálora, M.C., Wilches-Torres, A., Castaño, J.A.G. 2021. Extraction and physicochemical characterization of dried powder mucilage from Opuntia ficus-indica Cladodes and Aloe vera leaves: a comparative study. Polymers. 13: 1689. DOI: https://doi.org/10.3390/polym13111689

Prabhu, M., Kumar, A.R. and Rajamani, K. 2010. Influence of different organic substances on growth and herb yield of sacred basil (Ocimum sanctum L.). Indian Journal of Agricultural Research. 44: 48-52.

Prasad, R. and Shivay, Y.S. 2020. Agronomic biofortification of plant foods with minerals, vitamins and metabolites with chemical fertilizers and liming. Journal of Plant Nutrition. 43: 1534-1554. DOI: https://doi.org/10.1080/01904167.2020.1738464

Posmyk, M.M. and Szafrańska, K. 2016. Biostimulators: a new trend towards solving an old problem. Frontiers in Plant Science. 7: 748. DOI: https://doi.org/10.3389/fpls.2016.00748

Saag, L.M.K., Sanderson, G.R., Moyna, P. and Ramos, G. 1975. Cactaceae mucilage composition. Journal of the Science of Food and Agriculture. 26: 993-1000. DOI: https://doi.org/10.1002/jsfa.2740260716

Santos, J., Herrero, M., Mendiola, J.A., Oliva-Teles, M.T., Ibáñez, E., Delerue-Matos, C. and Oliveira, M.B.P.P. 2014. Fresh-cut aromatic herbs: Nutritional quality stability during shelf-life. LWT-Food Science and Technology. 59: 101-107. DOI: https://doi.org/10.1016/j.lwt.2014.05.019

SAS, Institute Inc. 2009. SAS User ́s guide. Release 8.1. (Eds). SAS Institute, Inc. Cary, NC.

Steiner A.A. 1984. The universal nutrient solution. In: Proceedings of the Sixth International Congress on Soilless Culture, Wageningen, Netherlands. 633-650.

Tahir, H.E., Xiaobo, Z., Komla, M.G. and Mariod, A.A. 2019. Nopal cactus (Opuntia ficus-indica (L.) Mill) as a source of bioactive compounds. En Wild fruits: Composition, nutritional value and products. Mariod A.A (ed.), pp 333-358. Springer Nature Switzerland. Cham, Switzerland. DOI: https://doi.org/10.1007/978-3-030-31885-7_26

Xiao, X., Cheng, Z., Meng, H., Liu, L., Li, H. and Dong, Y. 2013. Intercropping of green garlic (Allium sativum L.) induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L.) in a plastic tunnel. PLoS One. 8: e62173. DOI: https://doi.org/10.1371/journal.pone.0062173

Zulfiqar, F., Casadesús, A., Brockman, H. and Munné-Bosch, S. 2020. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci-ence. 295: 110194. DOI: https://doi.org/10.1016/j.plantsci.2019.110194

Resumen gráfico

Descargas

Archivos adicionales

Publicado

2024-02-22

Cómo citar

Moreno-Guerrero, D. E. ., RAMIREZ-OLVERA, S. M., Ojeda-Salgado, H. L., Pérez-Mercado, C. A. ., & Trejo-Téllez, L. I. . (2024). Extractos vegetales en el crecimiento y concentración nutrimental de hojas de lechuga (Lactuca sativa). Biotecnia, 26, 93–97. https://doi.org/10.18633/biotecnia.v26.1929

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.