Estudio de los cambios químicos en microensilados de exoesqueletos de camarón (Litopeneus vanamei) y chapulín (Sphenarium purpurascens) durante la fermentación en medio sólido

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v26.1976

Palabras clave:

FERMENTACIÓN EN MEDIO SÓLIDO, EXOESQUELETOS, CAMARÓN, CHAPULÍN

Resumen

La fermentación en medio sólido es una técnica utilizada para la producción de quitina, pigmentos, proteínas y lípidos. En el presente trabajo se evaluaron los cambios en la composición química y microbiológica en micro ensilados de exoesqueletos de camarón (Litopeneus vanamei) y chapulín (Sphenarium purpurascens) fermentados con un inoculo comercial de Lactobacillus plantarum AVG-112. Se determinó la cantidad de melaza para la fermentación, la composición proximal y la cuenta microbiológica de los ensilados. Los desechos se mezclaron con melaza de caña de azúcar como fuente de carbono y se inoculó usando una cepa comercial (Lactobacillus plantarum AVG-112). A los 5 días de fermentación ambos ensilados presentaron características físicas y químicas aceptables. Los coliformes totales, mohos y levaduras no estuvieron presentes siendo inhibidos por el proceso de ensilaje. Concluimos que la fermentación en medio sólido tiene características adecuadas para su utilización como suplemento en alimentos para organismos acuáticos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

ADOLFO AMADOR MENDOZA, UNIVERSIDAD DEL PAPALOAPAN

DOCTOR EN BIOTECNOLOGÍA

PROFESOR-INVESTIGADOR DE LA UNIVERSIDAD DEL PAPALOPAN CAMPUS LOMA BONITA OAXACA

ANA ROSA RAMIREZ SEAÑEZ, UNIVERSIDAD DEL PAPALOPAN

PROFESORA-INVESTIGADORA DE LA UNIVERSIDAD DEL PAPALOAPAN CAMPUS LOMA BONITA OXACA

DRA EN CIENCIAS AGRARIAS 

 

HIPOLITO HERNÁNDEZ HERNÁNDEZ, UNIVERSIDAD DEL PAPALOAPAN

DOCTOR EN CIENCIAS AGRARIAS 

PROFESOR-INVESTIGADOR DE LA UNIVERSIDAD DEL PAPALOAPAN CAMPUS LOMA BONITA OAXACA

Citas

Amador, M. A., Juárez, J. M., Hernández, H., Ramírez, L. P., Huerta, S., Herman, E. y Rodríguez, M. J. 2022. Evaluación de procesos combinados: purificación de quitina a partir de exoesqueletos de camarón (Penaeus sp) Y chapulín (Sphenarium purpurascens). Tropical and Subtropical Agroecosystems, 102: 1-12.

AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists. Washington, D.C.

Bashkar, N., Suresh, P., Sakhare, P., Sachindra, N. 2007. Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: Optimization of fermentation conditions by response surface methodology and effect of optimized conditions o deproteination/demineralization and carotenoid recovery, Enzyme and Microbial Technology, 40, 1427–1434. DOI: https://doi.org/10.1016/j.enzmictec.2006.10.019

Bertullo, V. 2009. Proyecto de fabricación industrial de ensilado biológico de pescado en Uruguay. Informe de pesca No. 538. FAO. 90 p.

Borrás, L. M., Valiño. E. C., Elías, A., Martínez, J. J., Sanabria, A. M. y Becerra, Mónica. L. 2020. Fermentación en estado sólido de residuos poscosecha de Solanum tuberosum y un preparado microbiano. Cuban Journal of Agricultural Science, 54 (4): 525-533.

Cira, L. A., Huerta, S., Hall, G. M. y Shirai, K. 2002. Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochemistry. 37:1359-1366. DOI: https://doi.org/10.1016/S0032-9592(02)00008-0

Cira L. 2000. Escalamiento de un proceso para la recuperación de quitina a partir de desechos de camarón. Tesis de Maestría. Universidad Autónoma Metropolitana – Iztapalapa - México.

Comisión Nacional de Acuicultura y Pesca. 2020. Anuario estadístico de Acuicultura y Pesca. Comisión nacional de acuicultura y pesca. Edición 2020. México. 21 pp.

Dapkevicius, L. N. E., Nout, J. R., Rombouts, F. M., Houben, J. H. y Wymenga, W. 2000. Biogenic amine formation and degradation by potential fish silage starter microorganisms. Int. J. Food Microbiol. 57: 107–114. DOI: https://doi.org/10.1016/S0168-1605(00)00238-5

Fagbenro, O., Jauncey, K. y Haylor, G. 1994. Nutritive value of diets containing dried lactic acid fermented fish silage and soybean meal for juvenile Oreochromis niloticus and Clarias gariepinus. Aquatic Living Resource. 7: 79-85. DOI: https://doi.org/10.1051/alr:1994010

Gimeno, M., Ramírez, J., Martínez, C., Pacheco, N., García, R., Barzana, E. y Shirai, K. 2007. One-Solvent extraction of astaxanthin from lactic acid fermented shrimp wastes. Journal of Agricultural and Food Chemistry 55, 10345-10350. DOI: https://doi.org/10.1021/jf071469h

Jay, J.M. 2000. Modern food microbiology. 6th edition, Aspen publication, Gaithersburg, Maryland, USA. DOI: https://doi.org/10.1007/978-1-4615-4427-2

Jung W. J., Jo G. H., Kuk J. H., Kim K. Y. and Park R. D. 2006. Extraction of chitin from red crab shell waste by cofermentation with Lactobacillus paracasei subsp. tolerans KCTC-3074 and Serratia marcescens FS-3. Applied Microbiology and Biotechnology, 71:234–237. DOI: https://doi.org/10.1007/s00253-005-0126-3

León, F.J. 2003. Consumo voluntario y digestibilidad de nutrientes de heno de gramíneas tropicales nativas y ensilaje de sorgo y el efecto de la suplementación con residuos fermentados de pescadería. MS Tesis. Universidad de Puerto Rico. RUM. 63pp.

Madigan, M. T., Martinko, J. M. y Parker, J. 2003. Brock, Biología de los microorganismos, 10a edición, Madrid, Pearson-Prentice Hall.

Nigam, P., Armour, G., Banat, I. M., Singh, D. y Marchant, R. 2000. Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour. Technol. 72:219-226. DOI: https://doi.org/10.1016/S0960-8524(99)00123-6

Pacheco, N., Garnica, M., Ramírez, J.Y., Flores, B., Gimeno, M., Bárzana E., Shirai K. (2009). Effect of temperature on chitin and astaxanthin recoveries from shrimp waste using lactic acid bacteria, Biore-source Technology 100, 2849–2854. DOI: https://doi.org/10.1016/j.biortech.2009.01.019

Pandey, A. 2003. Solid-state fermentation. Biochemical Engineering Journal. 13: 81–84. https://doi.org/10.1016/S1369-703X(02)00121-3 DOI: https://doi.org/10.1016/S1369-703X(02)00121-3

Peniche, C. 2006. Estudios sobre quitina y quitosana. Universidad de la Habana. Facultad de Química - Cuba.

Plascencia, J. M., Olvera, M. A., Arredondo, J. L., Hall, G. M. y Shirai, K. 2002. Feasibility of fishmeal replacement by shrimp head silage protein hydrolysate in Nile tilapia (Oreochromis niloticus L.) diets. Journal of the Science of Food and Agriculture. 82: 753-759. DOI: https://doi.org/10.1002/jsfa.1092

Ramirez C.L., Espinosa M.J., Peter M.G y Shirai K. 2010. The effect of pH on the production of chitinolytic enzymes of Verticillium fungicola in submerged cultures. Bioresource Technology. 101: 9236-9240. DOI: https://doi.org/10.1016/j.biortech.2010.06.160

Ramírez, C.L., Marín, M.C., Huerta, S., Revah, S. y Shirai, K. 2006. Enzymatic hydrolysis of chitin in the production of oligosaccharides using Lecanicillium fungicola chitinases. Process Biochemistry. 41: 1106-1110. DOI: https://doi.org/10.1016/j.procbio.2005.11.021

Ramírez Ramírez, J. C. 2009. Aprovechamiento de fauna de acompañamiento del camarón y subproductos pesqueros mediante la elaboración de ensilado de pescado.

Rao, M. S. and Stevens, W. F. (2005). Chitin production by Lactobacillus fermentation of shrimp biowaste in a drum reactor and its chemical conversion to chitosan. J. Chem. Technol. Biotechnol. 80: 1080-1087. DOI: https://doi.org/10.1002/jctb.1286

Rao, M.S., Muñoz, J. and Stevens, W.F. (2000). Critical factors in chitin production by fermentation of shrimp biowaste. Appl. Microbiol. Biotech., 54: 808–813 DOI: https://doi.org/10.1007/s002530000449

Shirai K, 1999. Utilización de desperdicios de camarón para recuperación de quitina. Proteínas y pigmentos por vía microbiana. Tesis de Doctorado. Universidad Autónoma Metropolitana – Iztapalapa - México.

Sini, T.K., Santhosh, S. y Mathew, P.T. 2007. Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydrate Research 342, 2423–2429. DOI: https://doi.org/10.1016/j.carres.2007.06.028

Terrones, E. E. y Reyes, A. W. 2018. Efecto de dietas con ensilado biológico de residuos de molusco en el crecimiento del camarón Cryphiops caementarius y tilapia Oreochromis niloticus en co-cultivo intensivo. Scientia Agropecuaria. (2): 167-176. DOI: https://doi.org/10.17268/sci.agropecu.2018.02.01

Torruco, J.G., Hernández, S. B., Herman, L. E., Martínez, S. C., Juarez, B. J.y Rodriguez. 2019. Chemical, functional and thermal characterization, and fatty acid profile of the edible grasshopper (Sphenarium purpurascens Ch.). Eur Food Res Technol. 245: 285–292. DOI: https://doi.org/10.1007/s00217-018-3160-y

Vidotti, R. M., Carneiro, D., Macedo, V. E. y Carneiro, D. J. 2003. Amino acid composition of processed fish silage using different raw materials. Animal Feed Science and Technology. 105, 199-204. DOI: https://doi.org/10.1016/S0377-8401(03)00056-7

Xu, Y., Gallert, C. y Winter J. 2008. Chitin purification from shrimp wastes by microbial deproteination and decalcification. Applied Microbiology and Biotechnology 79, 687–697. DOI: https://doi.org/10.1007/s00253-008-1471-9

Zahar M., Benkerroum, N., Guerouali, A., Laraki, Y. y Yakoubi, K. 2002. Effect of temperature, anaero-biosis, stirring and salt addition on natural fermentation silage of sardine and sardine wastes in sug-arcane molasses. Bioresour Technol. 82(2):171-6. DOI: https://doi.org/10.1016/S0960-8524(01)00165-1

Descargas

Publicado

2024-01-25

Cómo citar

AMADOR MENDOZA, A., BRAVO DELGADO, H. R., RAMIREZ SEAÑEZ, A. R. ., & HERNÁNDEZ HERNÁNDEZ, H. (2024). Estudio de los cambios químicos en microensilados de exoesqueletos de camarón (Litopeneus vanamei) y chapulín (Sphenarium purpurascens) durante la fermentación en medio sólido. Biotecnia, 26, 98–103. https://doi.org/10.18633/biotecnia.v26.1976

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.