Modelización bionómica de poblaciones de peces hiperestables. La pesquería de curvina golfina, Cynoscion othonopterus, como estudio de caso

Autores/as

  • R Urías-Sotomayor Unidad Guaymas del Centro de Investigaciones Biológicas del Noroeste, S. C. Km 2.35 Camino al Tular, Estero de Bacochibampo, Guaymas, Sonora 85454, México. 2 Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N, Mazatlán, Sinaloa 82000, México.
  • E.A. Aragón-Noriega 1Unidad Guaymas del Centro de Investigaciones Biológicas del Noroeste
  • J Payán-Alejo Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N, Mazatlán, Sinaloa 82000, México
  • M.A. Cisneros Mata Instituto Nacional de Pesca y Acuacultura. Calle 20 No. 605-Sur. Guaymas, Sonora 85400, México
  • G. Rodríguez-Domínguez Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N, Mazatlán, Sinaloa 82000, México

DOI:

https://doi.org/10.18633/biotecnia.v26.2065

Palabras clave:

hiperestabilidad, Cobb-Douglas, reducción de stock, corvina del golfo

Resumen

Generalmente se usan captura y esfuerzo para evaluar stocks usando modelos de producción excedente. Sin embargo, la hiperestabilidad resultante de agregaciones de desove (AD) genera retos en muchos recursos pesqueros; entonces se recomienda usar funciones de producción no lineal. Usando datos de 1991 a 2019, desarrollamos un método para evaluar pesquerías de recursos hiperestables, relajando el supuesto de capturabilidad constante y dependencia directa de captura-por-unidad-de-esfuerzo y biomasa. Usamos criterios de información para determinar el mejor modelo usando una función Cobb-Douglas. Ejemplificamos con la pesquería de corvina del golfo (Cynoscion othonopterus), un pez endémico al golfo de California con un sistema de cuotas anuales. Los modelos bionómicos se ajustaron utilizando captura y esfuerzo anuales, tasas de mortalidad natural, biomasa virgen y estructura económica. Ajustando por máxima verosimilitud, el mejor modelo se eligió con el criterio de Akaike. El esfuerzo de pesca actual sobrepasa el óptimo bionómico. Esto aplicar adoptar enfoques precautorios para proteger esta especie endémica y sostener la pesquería.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alam, M.S., Liu, Q., Nabi, M.R.U. and Al-Mamun, M.A. 2021. Fish stock assessment for data-poor fisheries, with a case study of tropical Hilsa shad (Tenualosa ilisha) in the water of Bangladesh. Sustainability. 13(7): 1-23.

https://doi.org/10.3390/su13073604.

Angelini, S., Armelloni, E.N., Costantini, I., De Felice, A., Isajlović, I., Leonori, I., Manfredi, C., Masnadi, F., Scarcella, G., Tičina, V. and Santojanni, A. 2021. Understanding the dinamics of ancillary pelagic species in the Adriatic Sea. Front. Mar. Sci. 8:728948.

https://doi.org/10.3389/fmars.2021.728948.

Baranov, F.I. 1918. On the question of the biological basis of fisheries. Nauchn. Issled. Ikhtiologicheskii Inst. Izv. 1: 81-128.

Barrowman, N.J. and Myers, R.A. 2000. Still more spawner–recruitment curves: the hockey stick and its generalizations. Can. J. Fish. Aq. Sci. 57: 665-676.

https://doi.org/10.1139/f99-282.

Beverton, R.J.H. and Holt, S.J. 1957. On the Dynamics of Exploited Fish Populations. London: Great Britain Ministry of Agriculture, Fisheries and Food. 533 pp.

Burnham, K.P. and Anderson, D.R. 2002. Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.), New York: Springer. 488 pp.

Caddy, J.F. y Mahon, R. 1996. Puntos de referencia para la ordenación pesquera = Reference points for fisheries management. Rome: FAO 347 pp.

Cobb, C.W. and Douglas, P.H. 1928. A theory of production. Am. Econ. Rev. 18: 139-165.

https://www.jstor.org/stable/1811556.

Coppola, G. and Pascoe, S. 1998. A Surplus Production Model with a nonlinear catch-effort relationship. Mar. Res. Econ. 13: 37-50.

https://doi.org/10.1086/mre.13.1.42629217.

Cotero-Altamirano, C.E., Enciso-Enciso, C., Hernández-Escalante, L., Zobeyda-Brasil, L., Valles-Ríos, H. y Venegas, B. 2018. Reproducción de la curvina golfina Cynoscion othonopterus en el Golfo de California [Reproduction of the gulf corvina Cynoscion othonopterus in the Gulf of California]. Cienc. Pesq. 26(2): 37-46.

Enciso-Enciso, C. 2014. Evaluación de la pesquería de curvina golfina Cynoscion othonopterus (Jordan & Gilbert, 1882) en el alto golfo de California [Assessment of the gulf corvina fishery Cynoscion othonopterus (Jordan & Gilbert, 1882) in the upper Gulf of California]. [MSc Thesis]. [Sinaloa (Mexico)]: Universidad Autónoma de Sinaloa. 65 pp.

[EDF] Environmental Defense Fund de México. 2016. Resultados económicos de la temporada de curvina golfina, Golfo de Santa Clara 2016 [Economic results of the gulf corvina season, Gulf of Santa Clara 2016. 29 pp.].

https://mexico.edf.org/sites/mexico.edf.org/files/resulteconcurvina2016_4comunidades_0.pdf (Accesed 10 January 2022).

Erisman, B.E., Allen, L.G., Claisse, J.T., Pondella, D.J., Miller, E.F. and Murray, J.H. 2011. The illusion of plenty: hyperstability masks collapses in two recreational fisheries that target fish spawning aggregations. Can. J. Fish. Aquat. Sci. 68: 1705-1716.

https://doi.org/10.1139/F2011-090.

Erisman, B.E., Appel, A.M., MaCall, A.D., Román, M.J. and Fujita, R. 2014. The influence of gear selectivity and spawning behavior on a data-poor assessment of a spawning aggregation fishery. Fish. Res. 159: 75-87.

https://doi.org/10.1016/j.fishres.2014.05.013.

Erisman, B.E., Grüss, A., Mascareñas-Osorio, I., Lıcón-González, H., Johnson, A.F. and López-Sagástegui, C. 2020. Balancing conservation and utilization in spawning aggregation fisheries: a trade-off analysis of an overexploited marine fish. ICES J. Mar. Sci. 77: 148-161.

https://doi:10.1093/icesjms/fsz195.

Gherard, K.E., Erisman, B.E., Aburto-Oropeza, O., Rowell, K. and Allen, L.G. 2013. Growth, development, and reproduction in gulf corvina (Cynoscion othonopterus). Bull. South. Cal. Acad. Sci. 112(1): 1-18.

https://doi.org/10.3160/0038-3872-112.1.1.

Haddon, M. 2011. Modelling and quantitative methods in fisheries, 2nd ed. Boca Raton, FLA: Chapman & Hall/CRC 406 pp.

Haggarty, D.R. and King, J.R. 2006. CPUE as an index of relative abundance for nearshore reef fishes. Fish. Res. 81(1): 89-93.

https://doi.org/10.1016/j.fishres.2006.05.015.

Haigh, I.D., Elio, M. and Pattiaratchi, C. 2011. Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels. J. Geophys. Res. 116, C06025.

https://doi:10.1029/201 0JC006645.

Hannesson, R. 1983. Bioeconomic production function in fisheries: theoretical and ernpirical analysis. Can. J. Fish. Aquat. Sci. 40: 968-982.

https://doi.org/10.1139/f83-123.

Harley, S.J., Myers, R.A. and Dunn, A. 2001. Is catch-per-unit-effort proportional to abundance? Can. J. Fish. Aquat. Sci. 58: 1760-1772.

https://doi.org/10.1139/cjfas-58-9-1760.

Hilborn, R., Amoroso, R.O, Anderson, C.M., Baum, J.K., Branch, T.A., Costello, C., de Moor, C.L., Faraj, A., Hively, D., Jensen, O.P., Kurota, H., Richard, L., Mace, P., McClanahan, T., Melnychuk, M.C., Minto, C., Osiol, G.Ch., Parma, A.M., Pons, M., Segurado, S., Szuwalski, C.S., Wilson, J.R. and Ye, Y. 2020. Effective fisheries management instrumental in improving fish stock status. Proc. Nat. Acad. Sci. 17: 2218-2224.

www.pnas.org/cgi/doi/10.1073/pnas.1909726116.

[Inapesca] Instituto Nacional de Pesca y Acuacultura. 2021. Acuerdo por el que se establece el volumen de captura permisible para el aprovechamiento de curvina golfina (Cynoscion othonopterus), en aguas de jurisdicción federal del Alto Golfo de California y delta del río Colorado para la temporada de pesca 2021 [Agreement establishing the volume of allowable catch for the use of Gulf curvina (Cynoscion othonopterus), in waters of federal jurisdiction of the Upper Gulf of California and Delta of the Colorado River for the 2021 fishing season]. Dictamen Técnico RJL/INAPESCA/DGAIPP/0006/2021. Mexico City: Secretaría de Agricultura y Desarrollo Rural.

https://cofemersimir.gob.mx/mirs/51050

Jensen, A.L. 1974. Leslie matrix models for fisheries studies. Biometrics 30(3): 547-551. https://doi:10.2307/2529208.

Jensen, A.L. 1996. Beverton and Holt life history invariants result fromo ptimal trade-off of reproduction and survival. Can. J. Fish. Aquat. Sci. 53: 820-822.

https://doi.org/10.1139/f95-233.

Katsanevakis, S. 2006. Modelling fish growth: Model selection, multi-model inference and model selection uncertainty. Fish. Res. 81: 229-235.

https://doi.org/10.1016/j.fishres.2006.07.002.

Kenchington, T.J. 2014. Natural mortality estimators for information-limited fisheries. Fish and Fisheries. 15(4): 533-562.

https://doi.org/10.1111/faf.12027.

Kimura, D, and Tagart, J. 1982. Stock reduction analysis, another solution to the catch equations. Can. J. Fish. Aquat. Sci. 39: 1467-1472.

https://doi.org/10.1139/f82-198.

Licón González, H.A., Sanjurjo-Rivera, E., Olivares-Bañuelos, N.C., Vázquez-Vera, W.L., Ortiz-Rodríguez, R.. 2023. Participative management experiences in the corvina fishery at the upper Gulf of California. Reg. y Soc. 35, e1678. https://doi.org/10.22198/rys2023/35/1678.

Mackinson, S., Sumaila, U.R. and Pitcher, T.J. 1997. Bioeconomics and catchability: fish and fishers behavior during stock collapse. Fish. Res. 31: 11-17.

https://doi.org/10.1016/S0165-7836(97)00020-9.

Martell, S.J.D.; Pine, W.E., Walters, C.J. 2008. Parameterizing age-structured models from a fisheries management perspective. Can. J. Fish. Aquat. Sci. 65(8): 1586-1600. https://doi:10.1139/f08-055.

Maunder, M.N., Sibert, J.R., Fonteneau, A., Hampton. J., Kleiber, P. and Harley, S.J. 2006. Interpreting catch per unit effort data to assess the status of individual stocks and communities. ICES J. Mar. Sci. 63: 1373-1385.

https://doi.org/10.1016/j.icesjms.2006.05.008.

Meissa, B., Dia, M., Baye, B.C., Bouzouma, M., Beibou, E. and Roa-Ureta, R.H. 2021. A comparison of three data-poor stock assessment methods for the pink spiny lobster fishery in Mauritania. Front. Mar. Sci. 8.

https://doi.org/10.3389/fmars.2021.714250.

Melnychuk, M.A., Peterson, E., Elliott, M. and Hilborn, R. 2017. Fisheries management impacts on target species status. Proc. Nat. Acad. Sci. 114: 178-183.

www.pnas.org/cgi/doi/10.1073/pnas.1609915114.

Mendívil-Mendoza, J.E., Aragón-Noriega, E.A., Arreola-Lizárraga, J.A., Rodríguez-Domínguez, G., Castillo-Vargasmachuca, S.G. y Ortega-Lizárraga, G.G. 2018. Indicadores de sustentabilidad para la pesquería de curvina golfina Cynoscion othonopterus en el Alto Golfo de California = Sustainability fishery indicator for Gulf corvina Cynoscion othonopterus in the Upper Gulf of California. Rev. Biol. Mar. Oceanogr. 53(1): 119-130.

http://dx.doi.org/10.4067/S0718-19572018000100119.

Methot, R.D., Wetzel, C.R. 2013. Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fish. Res. 142: 86-99. https://doi:10.1016/j.fishres.2012.10.012.

Pauly, D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 39: 175-192.

https://doi.org/10.1093/icesjms/39.2.175.

Pascoe, S., Kahui, V., Hutton, T. and Dichmont, C. 2016. Experiences with the use of bioeconomic models in the management of Australian and New Zealand fisheries. Fish. Res. 183: 539–548. doi:10.1016/j.fishres.2016.01.008.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191: 1-382.

Román-Rodríguez, M.J. 2000. Estudio poblacional del chano norteño, Micropogonias megalops y la curvina golfina Cynoscion othonopterus (Gilbert) (Pisces: Sciaenidae), especies endémicas del Alto Golfo de California, México [Population study of the northern chano, Micropogonias megalops and the gulf curvina Cynoscion othonopterus (Gilbert) (Pisces: Sciaenidae), endemic species of the Upper Gulf of California, Mexico]. [Sonora (México)] Instituto del Medio Ambiente y Desarrollo Sustentable del Estado de Sonora. Hoja de cálculo SNIB-CONABIO proyecto No. L298. CONABIO. Mexico. Also available on https://www.snib.mx/iptconabio/resource?r=SNIB-L298 (Accesed 10 January 2022).

Rose, G.A and Kulka, D.W. 1999. Hyperaggregation of fish and fisheries: how catch-per-unit-effort increased as the northern cod (Gadus morhua) declined. Can. J. Fish. Aquat. Res. 56(Suppl. 1): 118-127.

https://doi.org/10.1139/cjfas-56-S1-118

Ruelas-Peña, J. H., Valdez-Muñoz, C. y Aragón-Noriega, E.A. 2013. La pesquería de la corvina golfina y las acciones de manejo en el Alto Golfo de California, México = Analysis of the corvina gulf fishery as a function of management actions in the Upper Gulf of California, Mexico. Lat. Amer. J. Aquat. Res. 41(3): 498-505.

https://doi:103856/vol41-issue3-fulltext-13.

Schnute, J. 1987. A General Fishery Model for a Size-Structured Fish Population. Can. J. Fish. Aquat. Sci. 44(5): 924-940. https://doi:10.1139/f87-111.

Ulltang, Ø. 1996. Stock assessment and biological knowledge: can prediction uncertainty be reduced? ICES J. Mar. Sci. 53: 659-675.

https://doi.org/10.1006/jmsc.1996.0086.

Urías-Sotomayor, R., Rivera-Parra, G.I., Martínez-Cordero, F.J., Castañeda-Lomas, N., Pérez-González, R. and Rodríguez-Domínguez, G. 2018. Stock assessment of jumbo squid Dosidicus gigas in northwest Mexico. Lat. Am. J. Aquat. Res. 46(2): 330-336.

https://doi.org/10.3856/vol46-issue2-fulltext-8.

Walter, J.F. and Porch, C.E. 2012. Modeling terminal-year fishing mortality rates in western Atlantic bluefin tuna virtual population analyses. Aquat. Living Resour. 25: 333-340.

https://doi.org/10.1051/alr/2012037.

Resumen gráfico

Archivos adicionales

Publicado

2024-03-26

Cómo citar

Urías-Sotomayor, R., Aragón-Noriega, E. A., Payán-Alejo, J., Cisneros Mata, M. A., & Rodríguez-Domínguez, G. (2024). Modelización bionómica de poblaciones de peces hiperestables. La pesquería de curvina golfina, Cynoscion othonopterus, como estudio de caso. Biotecnia, 26, e2065. https://doi.org/10.18633/biotecnia.v26.2065

Número

Sección

Artículos originales

Métrica