Preparación controlada y actuación química de fibras de poliacrilonitrilo
DOI:
https://doi.org/10.18633/biotecnia.v25i3.2122Palabras clave:
Microfabricación; Microfibra; Poliacrilonitrilo; Actuación químicaResumen
Se obtuvieron fibras puras de poliacrilonitrilo (PAN) con un diámetro a escala micrométrica y se recogieron radialmente utilizando un sistema de hilatura húmeda por inmersión. Esta técnica es un método rápido y sencillo para fabricar fibras de PAN micrométricas. El diámetro de la fibra puede controlarse fácilmente ajustando el tamaño de la hilera. Las microfibras de PAN uniformes, lisas y continuas se modificaron adecuadamente mediante estabilización térmica y saponificación alcalina para obtener fibras sensibles al pH. Se investigó el efecto del tamaño del diámetro de la fibra en el comportamiento de actuación química en términos de características de cambio de longitud bajo la influencia de la solución de pH. Las microfibras mostraron un comportamiento de expansión/contracción y generación de fuerza estimulado por cambios en el pH ambiental. Las propiedades estructurales y químicas de las fibras se caracterizaron mediante técnicas de espectroscopia FT-IR y microscopía SEM.
Descargas
Citas
Brandrup, J. y Peebles, L. H., (1968). On the chromophore of polyacrylonitrile. IV. thermal oxidation of polyacrylonitrile and other nitrile-containing compounds. Macromolecules. 1(1), 64–72.
Choe, K. y Kim, K. J., (2006). Polyacrylonitrile linear actuators: chemomechanical and elec-tro-chemomechanical properties. Sensors and Actuators A: Physical. 126(1), 165–172.
Doi, M., Matsumoto, M. y Hirose, Y., (1992). Deformation of ionic polymer gels by electric fields. Macromolecules. 25(20), 5504–5511.
Farsani, R. E., Raissi, S., Shokuhfar, A. y Sedghi, A., (2009). FT-IR study of stabilized PAN fibers for fabrication of carbon fibers. International Journal of Mechanical and Mechatronics Engineering. 3(2), 161–164.
Feng, J., Zhang, C., Feng, J., Jiang, Y. y Zhao, N., (2011). Carbon aerogel composites prepared by am-bient drying and using oxidized polyacrylonitrile fibers as reinforcements. ACS Applied Materials & Interfaces. 3(12), 4796–4803.
Frank, E., Hermanutz, F. y Buchmeiser, M. R., (2012). Carbon fibers: precursors, manufacturing, and properties. Macromolecular Materials and Engineering. 297(6), 493–501.
Friedlander, H. N., Peebles, L. H., Brandrup, J. y Kirby, J. R., (1968). On the chromophore of polyacry-lonitrile. VI. mechanism of color formation in polyacrylonitrile. Macromolecules. 1(1), 79–86.
Gu, S. Y., Ren, J. y Wu, Q. L., (2005). Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers. Synthetic Metals. 155(1), 157–161.
Kalashnik, A. T., Smirnova, T. N., Chernova, O. P. y Kozlov, V. V., (2010). Properties and structure of polyacrylonitrile fibers. Polymer Science Series A. 52(11), 1233–1238.
Lee, S. J., Lee, D. Y., Song, Y. S. y Cho, N. I., (2007). Chemically driven polyacrylonitrile fibers as a linear actuator. Solid State Phenomena. 124-126, 1197–1200.
Liu, H. C., Chien, A.-T., Newcomb, B. A., Liu, Y. y Kumar, S., (2015). Processing, structure, and prop-erties of lignin- and cnt-incorporated polyacrylonitrile-based carbon fibers. ACS Sustainable Chemistry & Engineering. 3(9), 1943–1954.
Liu, J.-J., Ge, H. y Wang, C.-G., (2006). Modification of polyacrylonitrile precursors for carbon fiber via copolymerization of acrylonitrile with ammonium itaconate. Journal of Applied Polymer Sci-ence. 102(3), 2175–2179.
Mahmod, D. S. A., Ismail, A. F., Mustafa, A., Ng, B. C. y Abdullah, M. S., (2011). Effect of the solvent type on the formation and physical properties of polyacrylonitrile fibers via a solvent-free coagula-tion bath. Journal of Applied Polymer Science. 121(4), 2467–2472.
Mirbaha, H., Arbab, S., Zeinolebadi, A. y Nourpanah, P., (2013). An investigation on actuation behavior of polyacrylonitrile gel fibers as a function of microstructure and stabilization temperature. Smart Materials and Structures. 22(4), 045019.
Papkov, D., Beese, A. M., Goponenko, A., Zou, Y., Naraghi, M., Espinosa, H. D., Saha, B., Schatz, G. C., Moravsky, A., Loutfy, R., Nguyen, S. T. y Dzenis, Y., (2012). Extraordinary improvement of the graphitic structure of continuous carbon nanofibers templated with double wall carbon nanotubes. ACS Nano. 7(1), 126–142.
Rahaman, M. S. A., Ismail, A. F. y Mustafa, A., (2007). A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability. 92(8), 1421–1432.
Samatham, R., Park, I.-S., Kim, K. J., Nam, J.-D., Whisman, N. y Adams, J., (2006). Electrospun na-noscale polyacrylonitrile artificial muscle. Smart Materials and Structures. 15(6), N152—N156.
Schreyer, H. B., Gebhart, N., Kim, K. J. y Shahinpoor, M., (2000). Electrical activation of artificial muscles containing polyacrylonitrile gel fibers. Biomacromolecules. 1(4), 642–647.
Sedghi, A., Farsani, R. E. y Shokuhfar, A., (2008). The effect of commercial polyacrylonitrile fibers characterizations on the produced carbon fibers properties. Journal of Materials Processing Tech-nology. 198(1-3), 60–67.
Shi, X.-L., Hu, Q., Wang, F., Zhang, W. y Duan, P., (2016). Application of the polyacrylonitrile fiber as a novel support for polymer-supported copper catalysts in terminal alkyne homocoupling reactions. Journal of Catalysis. 337, 233–239.
Shi, X.-L., Tao, M., Lin, H. y Zhang, W., (2014). Application of the polyacrylonitrile fiber as a support for the green heterogeneous base catalyst and supported phase-transfer catalyst. RSC Adv. 4(109), 64347–64353.
Shiga, T. y Kurauchi, T., (1990). Deformation of polyelectrolyte gels under the influence of electric field. Journal of Applied Polymer Science. 39(1112), 2305–2320.
Sidorina, A. I. y Druzhinina, T. V., (2016). Macrostructure of polyacrylonitrile nanofibers produced by electrospinning. Fibre Chemistry. 47(5), 362–366.
Sreekumar, T. V., Liu, T., Min, B. G., Guo, H., Kumar, S., Hauge, R. H. y Smalley, R. E., (2004). Poly-acrylonitrile single-walled carbon nanotube composite fibers. Advanced Materials. 16(1), 58–61.
Wang, P. H., Liu, J. y Li, R. Y., (1994). Physical modification of polyacrylonitrile precursor fiber: its effect on mechanical properties. Journal of Applied Polymer Science. 52(12), 1667–1674.
Wu, H.-l., Bremner, D. H., Li, H.-y., Shi, Q.-q., Wu, J.-z., Xiao, R.-q. y Zhu, L.-m., (2016). A novel multifunctional biomedical material based on polyacrylonitrile: preparation and characterization. Materials Science and Engineering: C. 62, 702–709.
Yördem, O. S., Papila, M. y Menceloğlu, Y. Z., (2008). Effects of electrospinning parameters on poly-acrylonitrile nanofiber diameter: an investigation by response surface methodology. Materials & Design. 29(1), 34–44.
Zhao, R., Wang, Y., Li, X., Sun, B., Li, Y., Ji, H., Qiu, J. y Wang, C., (2016). Surface activated hydro-thermal carbon-coated electrospun PAN fiber membrane with enhanced adsorption properties for herbicide. ACS Sustainable Chemistry & Engineering. 4(5), 2584–2592.
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)