Efecto de la temperatura en la estabilidad de los pigmentos de Cosmos bipinnatus encapsulados por liofilización

Autores/as

  • José Eduardo Gallardo Sánchez Universidad Autónoma del Estado de México
  • Juan Orozco-Villafuerte Universidad Autónoma del Estado de México
  • Leticia Buendía González Universidad Autónoma del Estado de México
  • José Álvarez Ramírez Universidad Autónoma Metropolitana-Unidad Iztapalapa
  • Carmen Hernández Jaimes Universidad Autónoma del Estado de México

DOI:

https://doi.org/10.18633/biotecnia.v26.2236

Palabras clave:

Pigmento vegetal, encapsulación por liofilización, cinéticas de liberación

Resumen

El color es uno de los atributos más importantes, sobre todo en la industria alimentaria. Actualmente se están buscando fuentes alternas para la obtención de pigmentos vegetales, debido a sus propiedades bioactivas. Cosmos bipinnatus es una planta conocida por su alto contenido de antocianinas, moléculas que le aportan color y que tienen propiedades antioxidantes, sin embargo, una vez que son extraidas de la matriz vegetal presentan problemas de inestabilidad, por lo que es necesaria su protección. En este trabajo se realizó la extracción de los pigmentos de C. bipinnatus los cuales fueron encapsulados por liofilización como método de protección. Durante la encapsulación se evaluaron dos materiales de pared (goma arábiga (GA) y maltodextrina (M) solos y en combinación. Los microencapsulados obtenidos fueron caracterizados para determinar la eficiencia y rendimiento de encapsulación, además se realizaron cinéticas de liberación de los pigmentos a tres temperaturas (4°C, 25°C y 65°C) para encontrar las condiciones a las cuales los pigmentos se conservan de mejor manera. Se encontró que la encapsulación por liofilización es un método eficiente, que los materiales de pared funcionan mejor cuando se encuentran combinados y que los pigmentos vegetales obtenidos de C. bipinnatus (PPCb) se conservan mejor a temperaturas por debajo de los 25°C.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

José Eduardo Gallardo Sánchez, Universidad Autónoma del Estado de México

Licenciado en Biotecnología, actualmente estudiante de posgrado en Biotecnología en la Universidad Autónoma del Estado de México.

Juan Orozco-Villafuerte, Universidad Autónoma del Estado de México

Doctor en Biotecnología, con especialidad en biotecnología vegetal.

Profesor investigador en la Facultad de Química de la Universidad Autónoma del Estado de México

Leticia Buendía González, Universidad Autónoma del Estado de México

Dra. en Biotecnología con especialidad en Biotecnología vegetal

Profesora investigadora en la Facultad de Ciencias de la Universidad Autónoma del Estado de México

José Álvarez Ramírez, Universidad Autónoma Metropolitana-Unidad Iztapalapa

Dr. en Química con especialidad en bioprocesos y sistemas alimenticios

Profesor investigador en la Universidad Autónoma Metropolitana- unidad Iztapalapa

Citas

Acosta, B., Gutiérrez, J. and Serna, S. 2014. Bound phenolics in foods, a review. Food chemistry. 152: 46-55.

Albuquerque, B.R., Pinela, J., Barros, L., Oliveira, M.B.P. and Ferreira, I.C. 2020. Anthocyanin-rich extract of jabuticaba epicarp as a natural colorant: Optimization of heat-and ultrasound-assisted extractions and application in a bakery product. Food Chemistry. 316: 126364.

Arzola, S. (2021). Chalconas, bioactividad y aplicaciones sintéticas. Universidad de la Laguna.

Baite, T.N., Mandal, B. and Purkait, M.K. 2021. Ultrasound-assisted extraction of gallic acid from Ficus auriculata leaves using a green solvent. Food and Bioproducts Processing. 128: 1-11.

Ballesteros, L.F., Ramirez, M.J., Orrego, C.E., Teixeira, J.A., and Mussatto, S.I. 2017. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food chemistry. 237: 623-631.

Bhuiyan, M.N.I. and Nahid, M. 2023. Comparison of the Chemical Composition and Antimicrobial Activity of Two Types of Cosmos (Cosmos bipinnatus Cav. and Bidens ferulifolia (Jacq.)) Leaf Essential Oils Introduced in Bangladesh. Journal of Chromatography and Separation Techniques. 14:515.

Bijani, S. Gharari, Z. Ahmadnia, A. Danafar, H. and Sharafi, A. 2021. A Comparative Study of Apigenin Content and Antioxidant Potential of Cosmos Bipinnatus Transgenic Root Culture. Pharmaceutical and Biomedical Research. 7(2):87-96.

Cam, M. Icyer, N., and Erdogan, F. 2014. Pomegranate peel phenolics: Microencapsulation, storage stability and ingredient for functional food development. LWT- Food Science and Technology. 55:117-123.

Cheng, S.H., Khoo, H.E., Ismail, A., Abdul-Hamid, A. and Barakatun-Nisak, M.Y. 2016. Influence of extraction solvents on Cosmos caudatus leaf antioxidant properties. Iranian Journal of Science and Technology, Transactions A: Science. 40: 51-58.

da Silva Luna, V., Randau, K.P., Ferreira, M.R.A., and Soares, L.A.L. 2022. Development and validation of analytical method by spectrophotometry UV-Vis for quantification of flavonoids in leaves of Senna occidentalis Link. Research, Society and Development. 11(1): e14411118584-e14411118584.

da Silva Júnior, M.E., Araújo, M.V.R.L., Martins, A.C.S., dos Santos Lima, M., da Silva, F. L.H., Con-verti, A. and Maciel, M.I.S. 2023. Microencapsulation by spray-drying and freeze-drying of extract of phenolic compounds obtained from ciriguela peel. Scientific Reports. 13(1):15222.

Fernandes, L. Casal, S. Pereira, J. Malheiro, R. Rodrigues, N. Saraiva, J. and Ramalhosa, E. 2019. Borage, calendula, cosmos, Johnny Jump up, and pansy flowers: volatiles, bioactive compounds, and sensory perception. European Food Research and Technology. 245: 593-606.

Fernández-López, J.A., Fernández-Lledó, V. and Angosto, J.M. 2020. New insights into red plant pigments: More than just natural colorants. RSC advances. 10(41): 24669-24682.

Ghosh, S., Sarkar, T., Das, A. and Chakraborty, R. 2022. Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. Food Science and Technology. 153:112527.

Gutiérrez, F.G., Simental, S.S., Tenorio, R.G. and Martínez, M.A. 2023. Efecto de hidrolato de Cosmos bipinnatus sobre características de textura, color y actividad de agua de chorizo de conejo. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos. 8(1):418-423.

Idham, Z. Muhamad, I. and Sarmidi, M. 2012. Degradation kinetics and color stability of spray‐dried encapsulated anthocyanins from Hibiscus Sabdariffa L. Journal of Food Process Engineering. 35(4): 522-542.

Iwashina, T. 2015. Contribution to flower colors of flavonoids including anthocyanins: a review. Natural product communications. 10(3):1934578X1501000335.

Jafari, S. Mahdavi-Khazaei, K. and Hemmati-Kakhki, A. 2016. Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate polymers. 140.20-25.

Jang, I. Park, J. Park, E. Park, H. and Lee, S. 2008. Antioxidative and antigenotoxic activity of extracts from cosmos (Cosmos bipinnatus) flowers. Plant foods for human nutrition. 63: 205-210.

Jiang, X., Guan, Q., Feng, M., Wang, M., Yan, N., Wang M., and Gui. Z. 2019. Preparation and pH controlled release of Fe3O4/anthocyanin magnetic biocomposites. Polymers. 11(12): 2077.

Jurić, S., Jurić, M., Król-Kilińska, Ż., Vlahoviček-Kahlina, K., Vinceković, M., Dragović-Uzelac, V., and Donsì, F. 2022. Sources, stability, encapsulation and application of natural pigments in foods. Food Reviews International. 38(8):1735-1790.

Kaderides, K. Goula, A. and Adamopoulos, K. 2015. A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Innovative Food Science & Emerging Technologies.31:204-215.

Khazaei, K.M., Jafari, S.M., Ghorbani, M., and Kakhki, A.H. 2014. Application of maltodextrin and gum Arabic in microencapsulation of saffron petal's anthocyanins and evaluating their storage stability and color. Carbohydrate polymers.105:57-62.

Konica Minolta, 2023. Entendiendo el espacio de color CIE L*A*B*. https://sensing.konicaminolta.us/mx/blog/entendiendo-el-espacio-de-color-cie-lab/, Toluca, México, (Consultado june 6, 2023).

Kulichenko, E.O., Andreeva, O.A., Sergeeva, E.O., Sigareva, S.S., Terekhov, A.Y., Oganesyan, E.T., and Sidorskaya, S.Y. 2022. Pharmacological activity of extracts from plants of Cosmos bipinnatus Cav. species. Pharmacy & Pharmacology. 10(1):82-92.

Ladeska, V., Elya, B., and Hanafi M. 2022. Antioxidants, total phenolic and flavonoid content and toxicity assay of ampelas (Tetracera macrophylla Wall. Ex Hook. F. & Thoms) From Kalimantan-Indonesia. Pharmacognosy Journal.14(5).

López, R. Sandoval, T. and Iñiguez, M. 2023. Plant pigments: classification, extraction, and challenge of their application in the food industry. Food Bioprocess Technology. 1-17.

Mahdavi, S. Jafari, S. Assadpoor, E. and Dehnad, D. 2016. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum arabic and gelatin. International journal of biological macromolecules. 85:379-385.

Menegazzi, G.D.S., Teixeira, E.C., Pinto, L.A.D.A. and Burkert, J.F.D.M. 2020. Spray-Drying Microencapsulation of Carotenoids Produced by Phaffia rhodozyma. Industrial Biotechnology. 16(5):300-308.

Mota, I.G.C., Neves, R.A.M.D., Nascimento, S.S.D.C., Maciel, B.L.L., Morais, A.H.D.A., and Passos, T.S. 2023. Artificial dyes: Health risks and the need for revision of international regulations. Food Reviews International, 39(3), 1578-1593.

Naikoo, M.I., Dar, M.I., Raghib, F., Jaleel, H., Ahmad, B., Raina, A., ... and Naushin, F. 2019. Role and regulation of plants phenolics in abiotic stress tolerance: An overview. Plant signaling molecules. 157-168.

Nambela, L. 2023. The potentials of plant-based colorants for sustainable textile dyeing industry. Research Journal of Textile and Apparel. Nguyen, H.L., and Bechtold, T.

Nguyen H. L., & Bechtold T. 2021. Thermal stability of natural dye lakes from Canadian Goldenrod and onion peel as sustainable pigments. Journal of Cleaner Production, 315, 1281952021. Thermal stability of natural dye lakes from Canadian Goldenrod and onion peel as sustainable pigments. Journal of Cleaner Production, 315, 128195.

Ninama, V., Shah, H., Kapadia, C., Italiya, A., Datta, R., Singh, S., and Singh, A. 2024. Assessment of phytochemicals, nutritional compositions and metabolite profiling using GCMS–from annual edible flowers. Scientia Horticulturae, 323, 112551.

Oh, W.G., Jang, I.C., Jeon, G.I., Park, E.J., Park, H.R., and Lee, S.C. 2008. Antioxidative activity of extracts from Wisteria floribunda flowers. Journal of the Korean Society of Food Science and Nutrition, 37(6), 677-683.

Orozco-Villafuerte, J., Escobar-Rojas, A., Buendía-González, L., García-Morales, C., Hernandez-Jaimes, C., and Alvarez-Ramirez, J. 2018. Evaluation of the protection and release rate of bougainvillea (Bougainvillea spectabilis) extracts encapsulated in alginate beads. Journal of Dispersion Science and Technology.

Pasdaran, A., Zare, M., Hamedi, A., and Hamedi, A. 2023. A review of the chemistry and biological activities of natural colorants, dyes, and pigments: challenges, and opportunities for food, cosmetics, and pharmaceutical application. Chemistry & Biodiversity. 20(8): e202300561.

Piñón-Balderrama, C.I., Leyva-Porras, C., Terán-Figueroa, Y., Espinosa-Solís, V., Álvarez-Salas, C., and Saavedra-Leos, M.Z. 2020. Encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. Processes. 8(8):889.

Pudziuvelyte L., Marksa M., Sosnowska K., Winnicka K., Morkuniene R., and Bernatoniene, J. 2020. Freeze-drying technique for microencapsulation of Elsholtzia ciliata ethanolic extract using different coating materials. Molecules. 25(9):2237.

Rodríguez-Mena, A., Ochoa-Martínez, L.A., González-Herrera, S.M., Rutiaga-Quiñones, O. M., González-Laredo, R.F., and Olmedilla-Alonso, B. 2023. Natural pigments of plant origin: Classification, extraction and application in foods. Food Chemistry. 398:133908.

Rowe, R. Sheskey, P. & Quinn, M. (2009) Handbook of Pharmaceutical Excipients, 6th ed.

Sethi, S., Joshi, A., Arora, B., Bhowmik, A., Sharma, R.R., and Kumar, P. 2020. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. European Food Research and Technology. 246:591-598.

Shahidi, F. and Zhong, Y. 2015. Measurement of antioxidant activity. Journal of functional foods. 18:757-781.

Sharayei, P., Azarpazhooh, E., and Ramaswamy, H.S. 2020. Effect of microencapsulation on antioxidant and antifungal properties of aqueous extract of pomegranate peel. Journal of food science and technology. 57(2):723-733.

Silva, P. Stringheta, P. Teófilo, R. and De Oliveira, I. 2013. Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering. 117(4):538-544.

Souza, V. Thomazini M. de Carvalho Balieiro J. and Fávaro-Trindade, C. 2015. Effect of spray drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca). Food and Bioproducts Processing. 93:39-50.

Stoll, L., Costa, T.M.H., Jablonski, A., Flôres, S.H., and de Oliveira Rios, A. 2016. Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable film. Food and bioprocess technology. 9:172-181.

Sun, W., Nguyen, Q.D., Sipiczki, G., Ziane, S.R., Hristovski, K., Friedrich, L., and Bujna, E. 2022. Microencapsulation of Lactobacillus plantarum 299v Strain with Whey Proteins by Lyophilization and Its Application in Production of Probiotic Apple Juices. Applied Sciences.13(1):318.

Thakur, N.S., and Thakur, A. 2020. Microencapsulation of wild pomegranate flavedo phenolics by lyophilization: Effect of maltodextrin concentration, structural morphology, functional properties, elemental composition and ingredient for development of functional beverage. Food Science and Technology. 133:110077.

Wang, T. He, F. and Chen, G. 2014. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. Journal of Functional Foods. 7:101-111.

Woo. J.H., Shin, S.L., Chang, Y.D., and Lee, C.H. 2010. Antioxidant effect according to extraction method in extracts of Dendranthema zawadskii var. yezoense and Cosmos bipinnatus. Horticultural Science & Technology. 28(3):462-468.

Wrolstad, R.E., Durst, R.W., and Lee, J. 2005. Tracking color and pigment changes in anthocyanin products. Trends in Food Science & Technology.16(9):423-428.

Wu Y., Yang K.M., and Chiang P. Y. 2018. Roselle anthocyanins: Antioxidant properties and stability to heat and pH. Molecules. 23(6):1357.

Resumen gráfico

Archivos adicionales

Publicado

2024-08-22

Cómo citar

Gallardo Sánchez, J. E., Orozco-Villafuerte, J., Buendía González, L., Álvarez Ramírez, J., & Hernández Jaimes, C. (2024). Efecto de la temperatura en la estabilidad de los pigmentos de Cosmos bipinnatus encapsulados por liofilización. Biotecnia, 26, 432–442. https://doi.org/10.18633/biotecnia.v26.2236

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.