Membranas electrohiladas de PMMA/ZnO para mejorar la degradación fotocatalítica de azul de metileno utilizando irradiación solar

Autores/as

  • Rafael Ramírez Bon Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, A.P. 1-798, Querétaro, Qro., México https://orcid.org/0000-0001-8939-6731
  • Osvaldo Campista-Díaz Universidad Politécnica de Sinaloa, Higueras Km 3, 82199 Mazatlán, Sinaloa, México.
  • María Mónica Castillo Ortega Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83 000, Hermosillo, Sonora, México.
  • Kolli Chandra Sekhar Reddy mailto:13chandrasekhar@gmail.com
  • Aime Margarita Gutiérrez Peralta Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, A.P. 1-798, Querétaro, Qro., México.
  • José Ramón Flores León Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83 000, Hermosillo, Sonora, México.
  • Irela Santos Sauceda Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83 000, Hermosillo, Sonora, México.

DOI:

https://doi.org/10.18633/biotecnia.v27.2587

Palabras clave:

electrohilado con tratamiento térmico, poli(metil metacrilato), oxido de zinc, descomposición de colorantes, luz solar

Resumen

Microfibras electrohiladas de PMMA fueron combinadas con ZnO para aumentar la degradación de moléculas de colorantes. La descomposición de azul de metileno (AM)  presente en soluciones acuosas bajo irradiación solar fue estudiado con espectroscopía de absorción de UV-Vis y fotoluminiscencia. Las membranas fibrosas de PMMA fueron embebidas con partículas de ZnO utilizando un tratamiento térmico a bajas temperaturas proveyendo mejor manejabilidad y cambios morfológicos. El diámetro promedio de las fibras varía entre 1,5 ± 0,26 a 2.5 ± 0,36 µm, influenciado por el tratamiento térmico y la adición de ZnO.

El análisis de EDS indicó la presencia y distribución homogénea de Zn y O sobre las fibras de PMMA, también por FTIR, XRD y análisis de TGA se corrobora la presencia y composición de ZnO. La dispersion de ZnO en la matriz polimérica influye en la rugosidad y ángulo de contacto, características importantes en la degradación de colorantes. La decoloración de la molécula del colorante con fibras de PMMA/ZnO fue mejor en la irradiación solar (96% de degradación del AM) comparada con las condiciones en oscuro (< 2% de degradación de AM). La nueva estrategia de síntesis del material para la actividad fotocatalítica es adecuada para el tratamiento de efluentes de aguas residuales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abu-Dalo, M. A., Al-Rosan, S. A., and Albiss, B. A. 2021. Photocatalytic degradation of methylene blue using polymeric membranes based on cellulose acetate impregnated with ZnO nanostruc-tures. Polymers, 13(19), 3451.

Akhter, P., Nawaz, S., Shafiq, I., Nazir, A., Shafique, S., Jamil, F., and Hussain, M. 2023. Efficient visible light assisted photocatalysis using ZnO/TiO2 nanocomposites. Molecular Catalysis, 535, 112896.

Balen, R., da Costa, W. V., de Lara Andrade, J., Piai, J. F., Muniz, E. C., Companhoni, M. V., ... and Fernandes, D. M. 2016. Structural, thermal, optical properties and cytotoxicity of PMMA/ZnO fibers and films: Potential application in tissue engineering. Applied Surface Science, 385, 257-267.

Bellardita, M., Camera-Roda, G., Loddo, V., Parrino, F., and Palmisano, L. 2020. Coupling of membrane and photocatalytic technologies for selective formation of high added value chemicals. Catalysis Today, 340, 128-144.

Carrizales, C., Pelfrey, S., Rincon, R., Eubanks, T. M., Kuang, A., McClure, M. J., ... and Macossay, J. 2008. Thermal and mechanical properties of electrospun PMMA, PVC, Nylon 6, and Nylon 6, 6. Polymers for Advanced Technologies, 19(2), 124-130.

Cordoba, A., Saldias, C., Urzúa, M., Montalti, M., Guernelli, M., Focarete, M. L., and Leiva, A. 2022. On the versatile role of electrospun polymer nanofibers as photocatalytic hybrid materials applied to contaminated water remediation: A brief review. Nanomaterials, 12(5), 756.

Cui, W. W., Tang, D. Y., and Gong, Z. L. 2013. Electrospun poly (vinylidene fluoride)/poly (methyl meth-acrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batter-ies. Journal of power sources, 223, 206-213.

Di Mauro, A., Cantarella, M., Nicotra, G., Pellegrino, G., Gulino, A., Brundo, M. V., ... and Impellizzeri, G. 2017. Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications. Scientific re-ports, 7(1), 40895.

Elashmawi, I. S., and Hakeem, N. A. 2008. Effect of PMMA addition on characterization and morphology of PVDF. Polymer Engineering & Science, 48(5), 895-901.

Eskizeybek, V., Sarı, F., Gülce, H., Gülce, A., and Avcı, A. 2012. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Applied Catalysis B: Environmental, 119, 197-206.

Fatimah, I., Wang, S., and Wulandari, D. 2011. ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue. Applied Clay Science, 53(4), 553-560.

Fenoll, J., Vela, N., Garrido, I., Navarro, G., Pérez‐Lucas, G., and Navarro, S. (2015). Reclamation of water polluted with flubendiamide residues by photocatalytic treatment with semiconductor oxides. Photochemistry and Photobiology, 91(5), 1088-1094.

Heris, S. Z., Etemadi, M., Mousavi, S. B., Mohammadpourfard, M., and Ramavandi, B. 2023. Preparation and characterizations of TiO2/ZnO nanohybrid and its application in photocatalytic degradation of tetracycline in wastewater. Journal of Photochemistry and Photobiology A: Chemistry, 443, 114893.

Kansal, S. K., Singh, M., and Sud, D. 2008. Studies on TiO2/ZnO photocatalysed degradation of lig-nin. Journal of Hazardous materials, 153(1-2), 412-417.

Khanlou, H. M., Ang, B. C., Talebian, S., Barzani, M. M., Silakhori, M., and Fauzi, H. 2015. A systematic study of maghemite/PMMA nano-fibrous composite via an electrospinning process: synthesis and charac-terization. Measurement, 70, 179-187.

Kuo, W. S., and Ho, P. H. 2001. Solar photocatalytic decolorization of methylene blue in wa-ter. Chemosphere, 45(1), 77-83.

Kusic, H., Koprivanac, N., and Srsan, L. 2006. Azo dye degradation using Fenton type processes assisted by UV irradiation: A kinetic study. Journal of Photochemistry and photobiology A: Chemistry, 181(2-3), 195-202.

Law, M., Greene, L. E., Johnson, J. C., Saykally, R., and Yang, P. 2005. Nanowire dye-sensitized solar cells. Nature materials, 4(6), 455-459.

Liu, H., Yang, J., Liang, J., Huang, Y., and Tang, C. 2008. ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. Journal of the American Ceramic Society, 91(4), 1287-1291.

Liu, R., Ye, H., Xiong, X., and Liu, H. (2010). Fabrication of TiO2/ZnO composite nanofibers by electro-spinning and their photocatalytic property. Materials Chemistry and Physics, 121(3), 432-439.

Lv, H., Liu, Y., Bai, Y., Shi, H., Zhou, W., Chen, Y., and Yu, D. G. 2023. Recent combinations of elec-trospinning with photocatalytic technology for treating polluted water. Catalysts, 13(4), 758.

Maji, P., Choudhary, R. B., and Majhi, M. 2017. Structural, electrical and optical properties of silane-modified ZnO reinforced PMMA matrix and its catalytic activities. Journal of Non-Crystalline Solids, 456, 40-48.

Moafi, H. F., Shojaie, A. F., and Zanjanchi, M. A. 2011. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide. Thin Solid Films, 519(11), 3641-3646.

Mthethwa, T. P., Moloto, M. J., De Vries, A., and Matabola, K. P. 2011. Properties of electrospun CdS and CdSe filled poly (methyl methacrylate) (PMMA) nanofibres. Materials Research Bulletin, 46(4), 569-575.

Murtaza, S. Z., Shomal, R., Sabouni, R., and Ghommem, M. 2022. Facile metal organic framework com-posites as photocatalysts for lone/simultaneous photodegradation of naproxen, ibuprofen and methyl or-ange. Environmental Technology & Innovation, 27, 102751.

Namouchi, F., Smaoui, H., Fourati, N., Zerrouki, C., Guermazi, H., and Bonnet, J. J. 2009. Investigation on electrical properties of thermally aged PMMA by combined use of FTIR and impedance spectrosco-pies. Journal of Alloys and Compounds, 469(1-2), 197-202.

Nemiwal, M., Zhang, T. C., and Kumar, D. 2021. Recent progress in g-C3N4, TiO2 and ZnO based pho-tocatalysts for dye degradation: Strategies to improve photocatalytic activity. Science of the total environment, 767, 144896.

Ohlmaier‐Delgadillo, F., Castillo‐Ortega, M. M., Ramírez‐Bon, R., Armenta‐Villegas, L., Rodríguez‐Félix, D. E., Santacruz‐Ortega, H., ... and Santos‐Sauceda, I. 2016. Photocatalytic properties of PMMA‐TiO2 class I and class II hybrid nanofibers obtained by electrospinning. Journal of Applied Polymer Science, 133(48).

Ong, C. B., Ng, L. Y., and Mohammad, A. W. 2018. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81, 536-551.

Ong, W. L., Natarajan, S., Kloostra, B., and Ho, G. W. 2013. Metal nanoparticle-loaded hierarchically as-sembled ZnO nanoflakes for enhanced photocatalytic performance. Nanoscale, 5(12), 5568-5575.

Padmaraj, O., Venkateswarlu, M., and Satyanarayana, N. 2016. Effect of PMMA blend and ZnAl2O4 fillers on ionic conductivity and electrochemical performance of electrospun nanocomposite polymer blend fibrous electrolyte membranes for lithium batteries. RSC advances, 6(8), 6486-6495.

Rani, M., and Shanker, U. 2018. Sun-light driven rapid photocatalytic degradation of methylene blue by poly (methyl methacrylate)/metal oxide nanocomposites. Colloids and Surfaces A: Physicochemical and Engi-neering Aspects, 559, 136-147.

Reddy, C. S., Zak, A., and Zussman, E. 2011. WS 2 nanotubes embedded in PMMA nanofibers as energy absorptive material. Journal of Materials Chemistry, 21(40), 16086-16093.

Ren, G., Li, Z., Tian, L., Lu, D., Jin, Y., Zhang, Y., ... and Sun, D. 2023. Environmentally friendly waterproof and breathable electrospun nanofiber membranes via post-heat treatment. Colloids and Surfaces A: Physi-cochemical and Engineering Aspects, 658, 130643.

Shekh, M. I., Patel, K. P., and Patel, R. M. 2018. Electrospun ZnO nanoparticles doped core–sheath nano-fibers: characterization and antimicrobial properties. Journal of Polymers and the Environment, 26, 4376-4387.

Singh, S., Mahalingam, H., and Singh, P. K. 2013. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Applied Catalysis A: General, 462, 178-195.

Štrbac, D., Aggelopoulos, C. A., Štrbac, G., Dimitropoulos, M., Novaković, M., Ivetić, T., and Yannopoulos, S. N. 2018. Photocatalytic degradation of Naproxen and methylene blue: Comparison between ZnO, TiO2 and their mixture. Process Safety and Environmental Protection, 113, 174-183.

Tekin, D., Kiziltas, H., and Ungan, H. 2020. Kinetic evaluation of ZnO/TiO2 thin film photocatalyst in photocatalytic degradation of Orange G. Journal of Molecular Liquids, 306, 112905.

Wei, S., Sampathi, J., Guo, Z., Anumandla, N., Rutman, D., Kucknoor, A., ... and Wang, A. 2011. Na-noporous poly (methyl methacrylate)-quantum dots nanocomposite fibers toward biomedical applica-tions. Polymer, 52(25), 5817-5829.

Yao, W. T., Yu, S. H., Liu, S. J., Chen, J. P., Liu, X. M., and Li, F. Q. 2006. Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property. The Journal of Physical Chemistry B, 110(24), 11704-11710.

Yuan, Y., and Lee, T. R. 2013. Contact angle and wetting properties. In Surface science techniques (pp. 3-34). Berlin, Heidelberg: Springer Berlin Heidelberg.

Zakria, H. S., Othman, M. H. D., Kamaludin, R., Kadir, S. H. S. A., Kurniawan, T. A., and Jilani, A. 2021. Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activi-ty. RSC advances, 11(12), 6985-7014.

Zhang, C. C., Li, X., Yang, Y., and Wang, C. 2009. Polymethylmethacrylate/Fe 3 O 4 composite nanofiber membranes with ultra-low dielectric permittivity. Applied Physics A, 97, 281-285.

Zhou, W., Yan, L., Wang, Y., and Zhang, Y. 2006. SiC nanowires: A photocatalytic nanomaterial. Applied Physics Letters, 89(1).

Resumen gráfico

Publicado

2025-04-02

Cómo citar

Ramirez Bon, R., Campista-Díaz, O., Castillo Ortega, M. M., Sekhar Reddy, K. C., Gutiérrez Peralta, A. M., Flores León, J. R., & Santos Sauceda, I. (2025). Membranas electrohiladas de PMMA/ZnO para mejorar la degradación fotocatalítica de azul de metileno utilizando irradiación solar. Biotecnia, 27, e2587. https://doi.org/10.18633/biotecnia.v27.2587

Número

Sección

Artículos originales

Métrica