Electrospun PMMA/ZnO membranes for improvement the photocatalytic degradation of methylene blue using solar irradiation
DOI:
https://doi.org/10.18633/biotecnia.v27.2587Keywords:
electrospinning with heat treatment, poly (methyl methacrylate), zinc oxide, dyes descomposition, sunlightAbstract
Electrospun poly (methyl methacrylate) (PMMA) microfibers were combined with ZnO to enhance the photodegradation of dye molecules. The microstructural characteristic of fibrous material used for the decomposition of methylene blue (MB) present in aqueous solutions under dark and sunlight irradiation was studied using UV-Vis absorption and photoluminescence spectroscopy. The PMMA fibrous membrane was embedded with ZnO particles using the low temperature heat treatment providing better membrane handling and changing its morphology. The average diameter of fibrous composite varied between 1,5 ± 0,26 to 2,5 ± 0,36 µm, influenced by the thermal treatment and the ZnO addition.
The EDX analysis indicated the presence and homogenous distribution of Zn and O well over on PMMA fibrous, also by FTIR, DRX and TGA analysis corroborates the presence and composition of ZnO. The dispersion of ZnO in the polymer matrix influences the roughness and contact angle, important characteristics in the degradation of the dye. Dye molecule discoloration with composite PMMA/ZnO fibers was better in the sunlight irradiation (96% MB degradation) compared with the dark conditions (< 2% MB degradation). The new strategy of material synthesis for photocatalytic activity suitable for treatment for waste water effluents.
Downloads
References
Abu-Dalo, M. A., Al-Rosan, S. A., and Albiss, B. A. 2021. Photocatalytic degradation of methylene blue using polymeric membranes based on cellulose acetate impregnated with ZnO nanostruc-tures. Polymers, 13(19), 3451.
Akhter, P., Nawaz, S., Shafiq, I., Nazir, A., Shafique, S., Jamil, F., and Hussain, M. 2023. Efficient visible light assisted photocatalysis using ZnO/TiO2 nanocomposites. Molecular Catalysis, 535, 112896.
Balen, R., da Costa, W. V., de Lara Andrade, J., Piai, J. F., Muniz, E. C., Companhoni, M. V., ... and Fernandes, D. M. 2016. Structural, thermal, optical properties and cytotoxicity of PMMA/ZnO fibers and films: Potential application in tissue engineering. Applied Surface Science, 385, 257-267.
Bellardita, M., Camera-Roda, G., Loddo, V., Parrino, F., and Palmisano, L. 2020. Coupling of membrane and photocatalytic technologies for selective formation of high added value chemicals. Catalysis Today, 340, 128-144.
Carrizales, C., Pelfrey, S., Rincon, R., Eubanks, T. M., Kuang, A., McClure, M. J., ... and Macossay, J. 2008. Thermal and mechanical properties of electrospun PMMA, PVC, Nylon 6, and Nylon 6, 6. Polymers for Advanced Technologies, 19(2), 124-130.
Cordoba, A., Saldias, C., Urzúa, M., Montalti, M., Guernelli, M., Focarete, M. L., and Leiva, A. 2022. On the versatile role of electrospun polymer nanofibers as photocatalytic hybrid materials applied to contaminated water remediation: A brief review. Nanomaterials, 12(5), 756.
Cui, W. W., Tang, D. Y., and Gong, Z. L. 2013. Electrospun poly (vinylidene fluoride)/poly (methyl meth-acrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batter-ies. Journal of power sources, 223, 206-213.
Di Mauro, A., Cantarella, M., Nicotra, G., Pellegrino, G., Gulino, A., Brundo, M. V., ... and Impellizzeri, G. 2017. Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications. Scientific re-ports, 7(1), 40895.
Elashmawi, I. S., and Hakeem, N. A. 2008. Effect of PMMA addition on characterization and morphology of PVDF. Polymer Engineering & Science, 48(5), 895-901.
Eskizeybek, V., Sarı, F., Gülce, H., Gülce, A., and Avcı, A. 2012. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Applied Catalysis B: Environmental, 119, 197-206.
Fatimah, I., Wang, S., and Wulandari, D. 2011. ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue. Applied Clay Science, 53(4), 553-560.
Fenoll, J., Vela, N., Garrido, I., Navarro, G., Pérez‐Lucas, G., and Navarro, S. (2015). Reclamation of water polluted with flubendiamide residues by photocatalytic treatment with semiconductor oxides. Photochemistry and Photobiology, 91(5), 1088-1094.
Heris, S. Z., Etemadi, M., Mousavi, S. B., Mohammadpourfard, M., and Ramavandi, B. 2023. Preparation and characterizations of TiO2/ZnO nanohybrid and its application in photocatalytic degradation of tetracycline in wastewater. Journal of Photochemistry and Photobiology A: Chemistry, 443, 114893.
Kansal, S. K., Singh, M., and Sud, D. 2008. Studies on TiO2/ZnO photocatalysed degradation of lig-nin. Journal of Hazardous materials, 153(1-2), 412-417.
Khanlou, H. M., Ang, B. C., Talebian, S., Barzani, M. M., Silakhori, M., and Fauzi, H. 2015. A systematic study of maghemite/PMMA nano-fibrous composite via an electrospinning process: synthesis and charac-terization. Measurement, 70, 179-187.
Kuo, W. S., and Ho, P. H. 2001. Solar photocatalytic decolorization of methylene blue in wa-ter. Chemosphere, 45(1), 77-83.
Kusic, H., Koprivanac, N., and Srsan, L. 2006. Azo dye degradation using Fenton type processes assisted by UV irradiation: A kinetic study. Journal of Photochemistry and photobiology A: Chemistry, 181(2-3), 195-202.
Law, M., Greene, L. E., Johnson, J. C., Saykally, R., and Yang, P. 2005. Nanowire dye-sensitized solar cells. Nature materials, 4(6), 455-459.
Liu, H., Yang, J., Liang, J., Huang, Y., and Tang, C. 2008. ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. Journal of the American Ceramic Society, 91(4), 1287-1291.
Liu, R., Ye, H., Xiong, X., and Liu, H. (2010). Fabrication of TiO2/ZnO composite nanofibers by electro-spinning and their photocatalytic property. Materials Chemistry and Physics, 121(3), 432-439.
Lv, H., Liu, Y., Bai, Y., Shi, H., Zhou, W., Chen, Y., and Yu, D. G. 2023. Recent combinations of elec-trospinning with photocatalytic technology for treating polluted water. Catalysts, 13(4), 758.
Maji, P., Choudhary, R. B., and Majhi, M. 2017. Structural, electrical and optical properties of silane-modified ZnO reinforced PMMA matrix and its catalytic activities. Journal of Non-Crystalline Solids, 456, 40-48.
Moafi, H. F., Shojaie, A. F., and Zanjanchi, M. A. 2011. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide. Thin Solid Films, 519(11), 3641-3646.
Mthethwa, T. P., Moloto, M. J., De Vries, A., and Matabola, K. P. 2011. Properties of electrospun CdS and CdSe filled poly (methyl methacrylate) (PMMA) nanofibres. Materials Research Bulletin, 46(4), 569-575.
Murtaza, S. Z., Shomal, R., Sabouni, R., and Ghommem, M. 2022. Facile metal organic framework com-posites as photocatalysts for lone/simultaneous photodegradation of naproxen, ibuprofen and methyl or-ange. Environmental Technology & Innovation, 27, 102751.
Namouchi, F., Smaoui, H., Fourati, N., Zerrouki, C., Guermazi, H., and Bonnet, J. J. 2009. Investigation on electrical properties of thermally aged PMMA by combined use of FTIR and impedance spectrosco-pies. Journal of Alloys and Compounds, 469(1-2), 197-202.
Nemiwal, M., Zhang, T. C., and Kumar, D. 2021. Recent progress in g-C3N4, TiO2 and ZnO based pho-tocatalysts for dye degradation: Strategies to improve photocatalytic activity. Science of the total environment, 767, 144896.
Ohlmaier‐Delgadillo, F., Castillo‐Ortega, M. M., Ramírez‐Bon, R., Armenta‐Villegas, L., Rodríguez‐Félix, D. E., Santacruz‐Ortega, H., ... and Santos‐Sauceda, I. 2016. Photocatalytic properties of PMMA‐TiO2 class I and class II hybrid nanofibers obtained by electrospinning. Journal of Applied Polymer Science, 133(48).
Ong, C. B., Ng, L. Y., and Mohammad, A. W. 2018. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81, 536-551.
Ong, W. L., Natarajan, S., Kloostra, B., and Ho, G. W. 2013. Metal nanoparticle-loaded hierarchically as-sembled ZnO nanoflakes for enhanced photocatalytic performance. Nanoscale, 5(12), 5568-5575.
Padmaraj, O., Venkateswarlu, M., and Satyanarayana, N. 2016. Effect of PMMA blend and ZnAl2O4 fillers on ionic conductivity and electrochemical performance of electrospun nanocomposite polymer blend fibrous electrolyte membranes for lithium batteries. RSC advances, 6(8), 6486-6495.
Rani, M., and Shanker, U. 2018. Sun-light driven rapid photocatalytic degradation of methylene blue by poly (methyl methacrylate)/metal oxide nanocomposites. Colloids and Surfaces A: Physicochemical and Engi-neering Aspects, 559, 136-147.
Reddy, C. S., Zak, A., and Zussman, E. 2011. WS 2 nanotubes embedded in PMMA nanofibers as energy absorptive material. Journal of Materials Chemistry, 21(40), 16086-16093.
Ren, G., Li, Z., Tian, L., Lu, D., Jin, Y., Zhang, Y., ... and Sun, D. 2023. Environmentally friendly waterproof and breathable electrospun nanofiber membranes via post-heat treatment. Colloids and Surfaces A: Physi-cochemical and Engineering Aspects, 658, 130643.
Shekh, M. I., Patel, K. P., and Patel, R. M. 2018. Electrospun ZnO nanoparticles doped core–sheath nano-fibers: characterization and antimicrobial properties. Journal of Polymers and the Environment, 26, 4376-4387.
Singh, S., Mahalingam, H., and Singh, P. K. 2013. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Applied Catalysis A: General, 462, 178-195.
Štrbac, D., Aggelopoulos, C. A., Štrbac, G., Dimitropoulos, M., Novaković, M., Ivetić, T., and Yannopoulos, S. N. 2018. Photocatalytic degradation of Naproxen and methylene blue: Comparison between ZnO, TiO2 and their mixture. Process Safety and Environmental Protection, 113, 174-183.
Tekin, D., Kiziltas, H., and Ungan, H. 2020. Kinetic evaluation of ZnO/TiO2 thin film photocatalyst in photocatalytic degradation of Orange G. Journal of Molecular Liquids, 306, 112905.
Wei, S., Sampathi, J., Guo, Z., Anumandla, N., Rutman, D., Kucknoor, A., ... and Wang, A. 2011. Na-noporous poly (methyl methacrylate)-quantum dots nanocomposite fibers toward biomedical applica-tions. Polymer, 52(25), 5817-5829.
Yao, W. T., Yu, S. H., Liu, S. J., Chen, J. P., Liu, X. M., and Li, F. Q. 2006. Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property. The Journal of Physical Chemistry B, 110(24), 11704-11710.
Yuan, Y., and Lee, T. R. 2013. Contact angle and wetting properties. In Surface science techniques (pp. 3-34). Berlin, Heidelberg: Springer Berlin Heidelberg.
Zakria, H. S., Othman, M. H. D., Kamaludin, R., Kadir, S. H. S. A., Kurniawan, T. A., and Jilani, A. 2021. Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activi-ty. RSC advances, 11(12), 6985-7014.
Zhang, C. C., Li, X., Yang, Y., and Wang, C. 2009. Polymethylmethacrylate/Fe 3 O 4 composite nanofiber membranes with ultra-low dielectric permittivity. Applied Physics A, 97, 281-285.
Zhou, W., Yan, L., Wang, Y., and Zhang, Y. 2006. SiC nanowires: A photocatalytic nanomaterial. Applied Physics Letters, 89(1).

Published
How to Cite
Issue
Section
License
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.