COMPOSICIÓN QUÍMICA DEL EXTRACTO CLOROFÓRMICO DE Scutellaria havanensis JACQ

David Marrero Delange, Carmen L. Morales Rico, Richard Gutiérrez Cuesta

Resumen


El género Scutellaria, que pertenece a la familia Lamiaceae, incluye alrededor de 350 especies. Sus extractos y compuestos, principalmente flavonoides, han mostrado propiedades anti-inflamatorias, ansiolíticas, neuroprotectoras, antitrombóticas, antidiabéticas, anticancerígenas, antioxidantes, antimicrobianas y antivirales. Scutellaria havanensis Jacq., comúnmente llamada Escudo de La Habana, es la única especie de este género que crece en Cuba. Es una hierba perenne y se utiliza en etnomedicina para el tratamiento de la escabiosis, como diaforético y febrífugo. También se cultiva con fines ornamentales. Hasta el presente se han encontrado pocos estudios químicos y farmacológicos acerca de esta planta. Teniendo en cuenta las propiedades farmacológicas reportadas para  as diferentes especies de Scutellaria y sus compuestos, se llevó a cabo la caracterización por cromatografía de gases acoplada a espectrometría de masas del extracto clorofórmico de las partes aéreas de S. havanensis. Se encontró que dicho extracto estaba constituido por un 80% de flavonoides, donde la wogonina, dihidrowogonina, baicaleina, 5,2-dihidroxi-6,7,8-trimetoxiflavona y ácido crisofánico, fueron los componentes más abuntantes. Entre ellos, la wogonina fue el componente mayoritario con 48,3%.


Palabras clave


Scutellaria havanensis; flavonoides; wogonina; CG-EM

Texto completo:

PDF

Referencias


Boyle, S.P., Doolan, P.J., Andrews, C.E. y Reid, R.G. 2011. Evaluation of quality control strategies in Scutellaria herbal medicines. Journal of Pharmaceutical and Biomedical Analysis; 54: 951-7.

Brock, C., Whitehouse, J., Tewfik, I., y Towell. T. 2013. Identity issues surrounding American skullcap (Scutellaria lateriflora) and an optimized High Performance Liquid Chromatography method to authenticate commercially available products. Journal of Herbal Medicine; 3: 57-64.

Creaser, C.S., Koupai-Abyazani, M.R. y Stephenson, G.R. 1991. Mass spectra of trimethylsilyl derivatives of naturally occurring flavonoid aglycones and chalcones. Organic Mass Spectrometry; 26(3):157–160.

Evans, W. C. 2009. Trease and Evans Pharmacognosy. Edinburg:

Elsevier. Feyzia, P., Moghaddama, P.Z., y Alesheikha, P. 2016. GC-MS analysis of methanolic and dichloromethane extracts of Scutellaria pinnatifida A. Hamilt. ssp. alpina roots. J. Medicinal Plants and Natural Products;1(1):33-40.

Gao, Z., Huang, K., Yang, X., y Xu H. 1999. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta; 16: 643-50.

Hour, M.J., Huang, S.J., Chang, C.Y., Lin, Y.K., Wang, C.Y., Chang, Y.S. y Lin, C.W. 2013. Baicalein, Ethyl Acetate, and Chloroform Extracts of Scutellaria baicalensis. Inhibit the Neuraminidase Activity of Pandemic 2009 H1N1 and Seasonal Influenza A Viruses. Evidence-Based Complementary and Alternative Medicine. Article ID750803, 11 pages http://dx.doi.org/10.1155/2013/750803

Joshee, N., Tascan, A., Medina-Bolivar, F., Parajuli, P., Rimando, M.A., Shannon, D.A. y Adelberg, J.W. 2013. Biotechnology for Medicinal Plants. Chapter 3. Scutellaria: Biotechnology, Phytochemistry and Its Potential as a Commercial Medicinal Crop.. S. Chandra et al. (eds.). pp-69-99.

Springer-Verlag Berlin Heidelberg. DOI: 10.1007/978-3-642-29974-2_3.

Kowalczyk, E., Krzesiński, P., Kura, M., Niedworok, J., Kowalski, J. y Błaszczyk, J. 2006. Pharmacological effects of flavonoids from Scutellaria baicalensis. Przegl Lek. 63(2): 95-6.

Ku, S.K. 2014. Antithrombotic activities of wogonin and wogonoside via inhibiting platelet aggregation. Fitoterapia; 98:27-35.

Lai, M.Y., Chen, C.C., Hsiu, S.L., y Lee, P.D. 2001. Analysis and comparison of baicalin, baicalein and wogonin contents in traditional decoctions and commercial extracts of Scutellaria radix. J of Food and Drug Analysis; 9: 145-149.

Li-Weber, M. 2009. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev. 35(1):57-68. doi: 10.1016/j.ctrv.2008.09.005

Makino, T., Hishida, A., Goda, Y., y Mizukami, H. 2008. Comparison of the major flavonoid content of S. baicalensis, S. lateriflora, and their commercial products. J. Nat Med.;62: 294-299.

Malikov, V.M., Yuldashev, M.P. 2002. Phenolic compounds of plants of the Scutellaria L. genus: Distribution, structure and properties. Chemistry of Natural Compound; 38: 358–406.

Mamadalieva, N.F., Herrmannb, F., El-Readib, M.Z., Tahranib, A., Hamoudb, R., Egamberdieva, D.R., Azimova, S.S. y Wink, M. 2011. Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. J. Pharmacy and Pharmcol; 63(10):1346–1357.

Mamadalieva, N.F., Vinciguerra, V., Ovidi, E. y Tiezi, A. 2013. Identification and isolation of non-polar compounds from the chloroform extract of S. ramosissima. Natural Product Research; 27(21):2059-2062.

Marrero, D., Morales, C.L., González, V.L., Cuéllar, A., Scull, R. y Salas, E. 2015. Selective and High Yield Isolation of Pure Wogonin from Aerial Parts of Scutellaria havanensis Jacq. Int. J. Pharm. Sci. Rev. Res; 30(2): 104-108.

Marrero, D., Morales, C.L., González, V.L., Salas, E., Sierra, R.C., Rodríguez, E.A. y Vicente, R. 2012. Phytochemical screening of Scutellaria havanensis Jacq. Tamizaje fitoquímico de Scutellaria havanensis Jacq. Rev Cubana Plant Med; 17 (4).

Marrero, D., Morales, C.L., Sierra, R., González, V.L. y Rodríguez, E.A. 2013. Volatile constituents from leaves of endemic Scutellaria havanensis in Cuba. J. Essential Oil Bearing Plants; 16 (3):368-371.

Oviedo, R., Herrera, P., Caluff, M.G., Regalado, L., Ventosa, I., Plasencia, J.M., et al. 2012. Lista nacional de especies de plantas invasoras y potencialmente invasoras en la República de Cuba - 2011. Bissea; 6 (1).

Park, J.S. 2015. Chondroprotective Effects of Wogonin in Experimental Models of Osteoarthritis in vitro and in vivo. Biomol Ther (Seoul); 23(5):442-8.

Patel, S., Paras, J., Nirmal, M.R. y Parajuli, A.P. 2013. Anti-cancer Scopes and Associated Mechanisms of Scutellaria Extract and Flavonoid Wogonin. Current Cancer Therapy Reviews, 9: 34-42.

Paton, A. 1990. A Global Taxonomic Investigation of Scutellaria (Labiatae). Kew Bulletin. 45(3): 399-450. doi: 0.2307/4110512

Roig, J.T. 2012. Plantas medicinales, aromáticas o venenosas de Cuba. Segunda Edición. La Habana: Editorial Científico- Técnica:389-390.

Shang, X., He, X., Li, M., Zhang, R., Fan, P., Zhang, Q. y Jia, Z. 2010. The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol; 128: 279–313. doi: 10.1016/j.jep.2010.01.006

Tai, T.S., Chang, L.Y. y Xue, H. 2005. Therapeutic potential of wogonin: a naturally occurring flavonoid. CNS Drug Rev; 11(2):141-50.

Tashmatov, Z.O., Eshbakova, K.A. y Bobakulov, K. M. 2011. Chemical components of the aerial part of Scutellaria schachristanica. Chemistry of Natural Compounds; 47(3):440-441.

Tayarani-Najarani, Z., Asili, J., Parsaee, H., Mousavi, S.H., Mashhadian, N.V., Mirase, A., y Emami, S.A. 2011. Wogonin and neobaicalein from Scutellaria litwinowii roots are apoptotic for HeLa cells. Rev. Bras. Farmacogn; 22: 2.

Yu, J., Liu, H., Lei, J., Tan, W., Hu, X. y Zou, G. 2007. Antitumor activity of chloroform fraction of Scutellaria barbata and its active constituents. Phytother Res; 21(9):817-22.

Yu-Chiao, Y., Ming-Chi, W., Fan-Yu, L. y Ting-Chia, H. 2013. Simultaneous Extraction and Quantitation of Oleanolic Acid and Ursolic Acid from Scutellaria barbata D. Don by Ultrasound-Assisted Extraction and High-Performance Liquid Chromatography. Chemical Engineering Communications; 201 (4):482-500. doi: 10.1080/00986445.2013.777901

Yu-Chiao, Y., Ming-Chi, W., Ting-Chia, H., Suen-Zone, L. y Shiow- Shyung, L. 2013. Comparison of modified ultrasoundassisted and traditional extraction methods for the extraction of baicalin and baicalein from Radix Scutellariae. Industrial Crops and Products; 45:182–190.

Zhu, Y. 2015. Wogonin increases β-amyloid clearance and inhibits tau phosphorylation via inhibition of mammalian target of rapamycin: potential drug to treat Alzheimer’s disease. Neurol Sci; 36(7):1181-8.




DOI: http://dx.doi.org/10.18633/biotecnia.v19i3.448

Enlaces refback

  • No hay ningún enlace refback.

Comentarios sobre este artículo

Ver todos los comentarios
 |  Añadir comentario