Density and longitudinal dynamic modulus of three angiosperm woods impregnated with boron
DOI:
https://doi.org/10.18633/biotecnia.v22i3.1228Keywords:
Albizia plurijuga, Fraxinus Americana, hot-cold bath, Spathodea campanulataAbstract
The objective of the investigation was to determine the densities and dynamic modules with longitudinal vibrations, before and after applying the impregnation treatment based on boron salts to wood from Spathodea campanulata, Fraxinus americana and Albizia plurijuga. For each species, 40 specimens were impregnated with the hot-cold bath method and the corresponding retentions were determined at concentrations of 1%, 2% and 3%. Wood densities do not change after treatment. The densities before treatment were 351 kg m-3 for S. campanulata, 654 kg m-3 for F. americana and 830 kg m-3 for A. plurijuga. The dynamic modules of F. americana and A. plurijuga did not vary by treatment. A different case is S. campanulata whose dynamic modules did vary. The dynamic modules before treatment were 4765 MN m-2 for S. campanulata, 13303 MN m-2 for F. americana and 16769 MN m-2 for A. plurijuga. Based on its dynamic modules, the Woods of F. americana and A. plurijuga can be used in structural design. Instead, S. campanulata can be used as a component in products where high mechanical resistance is not required.
Downloads
References
Ahn, S.H., Oh, S.C., Choi, I.G., Han, G.S., Jeong, H.S., Kim, K.W., Yoon, Y.H. y Yang I. 2010. Environmentally friendly Wood preservatives formulated with enzymatic-hydrolyzed okara, copper and/or boron salts. Journal of Hazardous Materials. 178(1): 604-611.
American Institute of Timber Construction. 2012. Timber Construction Manual. American Institute of Timber Construction, Tigar.
American Society for Testing Materials. 2014. ASTM D143-14. Standard Test Methods for Small Clear Specimens of Timber.
American Society for Testing Materials, West Conshohocken. American Wood-Preservers’ Association. 2007. P5-07 Standard for Waterborne Preservatives. American Wood-Preservers’ Association, Chicago.
Ávila Calderón, L.E.A., Herrera Ferreyra, M.A. y Raya González, D. 2012. Preservación de la Madera en México. Universidad Michoacana de San Nicolás de Hidalgo, Morelia.
Baar, J., Tippner, J. y Rademacher, P. 2015. Prediction of mechanical properties modulus of rupture and modulus of elasticity of five tropical species by nondestructive methods. Maderas. Ciencia y tecnología. 17(2): 239-252.
Bari, E., Nazarnezhad, N., Kazemi, S.M., Tajick G., Mohammad A., Mohebby, B., Schmidt, O. y Clausen, C.A. 2015. Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. International Biodeterioration & Biodegradation. 104: 231-237.
Baysal, E., Yalinkilic, M.K., Altinok, M., Sonmez, A., Peker, H. y Colak, M. 2007. Some physical, biological, mechanical, and fire properties of wood polymer composite (WPC) pretreated with boric acid and borax mixture. Construction and Building Materials. 21(9): 1879-1885.
Beck, G., Thybringc, E.E. y Thygesenc, L.G. 2018. Brown-rot fungal degradation and de-acetylation of acetylated wood. International Biodeterioration & Biodegradation. 135: 62-70.
Bucur, V. 2006. Acoustics of Wood. Springer-Verlag, Berlin.
Chauhan, S. y Sethy, A. 2016. Differences in dynamic modulus of elasticity determined by three vibration methods and their relationship with static modulus of elasticity. Maderas: Ciencia y Tecnología. 18(2): 373-382.
Dackermann, U., Elsener, R., Li, J. y Crews, K. 2016. A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood. Construction and Building Materials. 102: 963-976.
Forest Products Laboratory. 2010. Wood handbook. Wood as an engineering material. Forest Products Laboratory, Madison.
Freitas, A.S., Goncalez, J.C. y Del Menezzi, C.H. 2016. Tratamento termomecanico e seus efeitos nas propriedades da Simarouba amara (Aubl.). Floresta e Ambiente. 23(4): 565-572.
Gobierno del Distrito Federal. 2004. Reglamento de Construcciones para el Distrito Federal y sus Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Madera. Gobierno del Distrito Federal, México.
Goncalves, R., Trinca, A.J. y Pellis, B.P. 2014. Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Science and Technology. 48(2): 269-287.
Henriques, D., De Brito, J., Duarte, S. y Nunes, L. 2014. Consolidating preservative-treated wood: Combined mechanical performance of boron and polymeric products in wood degraded by Coniophora puteana. Journal of Cultural Heritage. 15(1): 10-17.
International Organization for Standardization. 2012. ISO 3129:2012. Wood. Sampling methods and general requirements for physical and mechanical testing of small clear wood specimens. International Organization for Standardization, Geneva.
International Organization for Standardization. 2014a. ISO 13061-4:2014. Physical and mechanical properties of wood. Test methods for small clear wood specimens. Part 4: determination of modulus of elasticity in static bending. International Organization for Standardization, Geneva.
International Organization for Standardization. 2014b. ISO 13061-1:2014. Physical and mechanical properties of wood. Test methods for small clear wood specimens. Part 1: determination of moisture content for physical and mechanical tests. International Organization for Standardization, Geneva.
International Organization for Standardization. 2014c. ISO 13061-2:2014. Physical and mechanical properties of wood. Test methods for small clear wood specimens. Part 2: determination of density for physical and mechanical tests. International Organization for Standardization, Geneva.
Jin, E. y Chung, Y.J. 2018. Fire risk of wood treated with boron compounds by combustion test. Fire Science and Engineering. 32(3): 19-26.
Kartal, S.N., Hwang, W.J. y Imamura, Y. 2008. Combined effect of boron compounds and heat treatments on wood properties: Chemical and strength properties of wood. Journal of Materials Processing Technology. 198(1): 234-240.
Keskin, H. y Mutlu, E. 2017. Impacts of impregnation with fire retardant chemicals on the moe in bending of some woods. Journal of Polytechnic. 20(3): 607-612.
Kouroussis, G., Ben, F.L. y Descamps, T. 2017. Assessment of timber element mechanical properties using experimental modal analysis. Construction and Building Materials. 134:254-261.
Mattos, B.D., De Cademartori, P.H.G., Lourencon, T.V., Gatto, D.A. y Magalhaes, W.L.E. 2014. Biodeterioration of wood from two fast-growing eucalypts exposed to field test. International Biodeterioration & Biodegradation. 93: 210-215.
Neto, P.N.M., Paes, J.B. y Segundinho, P.G.D. 2016. Evaluation of elasticity and rupture modulus of woods by destructive and non-destructive techniques. Scientia Forestalis. 44(111): 683-690.
Obanda, D.N., Shupe, T.F. y Barnes, H.M. 2008. Reducing leaching of boron-based wood preservatives. A review of research. Bioresource Technology. 99(15): 7312-7222.
Organismo Nacional de Normalización y Certificación de la Construcción y Edificación. 2014. NMX-C-178-ONNCCE-2014: Industria de la construccion. Preservadores para madera. Clasificación y requisitos. México.
Pellerin, R.F. y Ross, R.J. 2002. Nondestructive evaluation of wood. Forest Products Society, Madison.
Percin, O., Sofuoglu, S.D. y Uzun, O. 2015. Effects of boron impregnation and heat treatment on some mechanical properties of oak (Quercus petraea Liebl.) wood. BioResources. 10(3): 3963-3978.
Silva Guzmán, J.A., Fuentes Talavera, F.J., Rodríguez Anda, R., Torres Andrade, P.A., Lomeli Ramírez, M.A., Ramos Quirarte, J., Waitkus, C. y Richter, H.G. 2010. Fichas de propiedades tecnológicas y usos de maderas nativas de México e importadas. Comisión Nacional Forestal, México.
Simsek, H., Baysal, E., Yilmaz, M. y Culha, F. 2013. Some mechanical properties of wood impregnated with environmentallyfriendly boron and copper based chemicals. Wood Research. 58(3): 495-504.
Sotelo Montes., C., Weber, J.C., García, R.A., Silva, D.A. y Muñiz, G.I.B. 2017. Variation in growth, wood stiffness and density, and correlations between growth and wood stiffness and density in five tree and shrub species in the Sahelian and Sudanian ecozones of Mali. Trees. 31(3): 833-849.
Sotomayor Castellanos, J.R. 2015. Banco FITECMA de características físico - mecánicas de maderas mexicanas. Universidad Michoacana de San Nicolas de Hidalgo, Morelia.
Spycher, M., Schwarze, F.W.M.R. y Steiger, R. 2008. Assessment of resonance wood quality by comparing its physical and histological properties. Wood Science and Technology. 42(4): 325-342.
Tamarit Urias, J.C. y Lopez Torres, J.L. 2007. Xilotecnologia de los principales arboles tropicales de México. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, México.
Tamarit Urias, J.C. y Fuentes Salinas M. 2003. Parámetros de humedad de 63 maderas latifoliadas mexicanas en función de su densidad básica. Revista Chapingo Serie Ciencias Forestales y del Ambiente. 9(2): 155-164.
Temiz, A., Alfredsen, G., Eikenes, M. y Terziev, N. 2008. Decay resistance of wood treated with boric acid and tall oil derivates. Bioresource Technology. 99(7): 2102-2106.
Thelandersson, S. y Larsen H.J. 2003. Timber Engineering. Wiley, New Jersey.
Wang, F., Liu, J. y Lv, W. 2017. Thermal degradation and fire performance of wood treated with PMUF resin and boron compounds. Fire and Materials. 41(8): 1051-1057.
Yoshihara, H. 2012. Examination of the specimen configuration and analysis method in the flexural and longitudinal vibration tests of solid wood and wood-based materials. Forest Products Journal. 62(3): 191-200.
Downloads
Published
How to Cite
Issue
Section
License
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.