Validation of suitable reference genes for quantitative real-time PCR normalization in Crassostrea gigas spat stage during toxic dinoflagellates exposure//Validación de genes de referencia adecuados para la normalización de PCR cuantitativa en tiempo real de juveniles de Crassostrea gigas expuestos a dinoflagelados tóxicos

Authors

  • Reyna Romero Geraldo Tecnológico Nacional de México/Instituto Tecnológico de La Paz, Boulevard Forjadores de Baja California Sur No. 4720. P.O. Box 43-B. 23080, La Paz, Baja California Sur, México https://orcid.org/0000-0002-3772-0592
  • Norma Hernández Saavedra Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, Baja California Sur, México https://orcid.org/0000-0002-7004-299X
  • Diana Fimbres Olivarría Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora (DICTUS). Blvd. Luis Donaldo Colosio s/n, C.P. 83000 Hermosillo, Sonora, México https://orcid.org/0000-0003-2509-507X
  • Norma García Lagunas Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora (DICTUS). Blvd. Luis Donaldo Colosio s/n, C.P. 83000 Hermosillo, Sonora, México

DOI:

https://doi.org/10.18633/biotecnia.v22i2.1250

Keywords:

Gene expression, reference gene, normalization, toxic dinoflagellates, Crassostrea gigas

Abstract

The quantitative real-time polymerase chain reaction is a widely used method for gene expression analysis requiring carefully selected reference genes to ensure data validity. Regardless of several studies on gene expression bivalves and particularly Crassostrea gigas, has not been fully investigated regarding the evaluation of reference genes suitable for normalization of expression analysis. In this study, five candidate reference genes: actin, β tubulin, α subunit of elongation factor 1, glyceraldehyde-3-phosphate dehydrogenase and 28S ribosomal RNA were analyzed, to determine the most suitable reference genes, after of Crassostrea gigas spat were fed with Gymnodinium catenatum and Prorocentrum lima in mixed and compared to non-toxic diet Isochrysis galbana. The results showed that β-tub and ef-1α were the most stable genes for oysters feed with a mixed diet of P. lima and I. galbana. The gapdh and 28S rRNA were the most stable genes for oysters feed with G. catenatum and I. galbana. In addition, the selection of optimal reference genes during dinoflagellates exposure was verified by analyzing the expression level of trypsin and cytochrome c oxidase I target genes. Our study could be beneficial for future studies on gene expression in C. gigas.

RESUMEN

La reacción en cadena de la polimerasa cuantitativa en tiempo real es un método ampliamente utilizado para el análisis de expresión génica, requiere genes de referencia cuidadosamente seleccionados para garantizar la validez de los datos. A pesar de los estudios sobre expresión génica en bivalvos y particularmente en Crassostrea gigas, existe escasa información sobre la evaluación de los genes de referencia adecuados para la normalización del análisis de expresión. En este estudio se analizaron cinco genes candidatos de referencia: actina, β tubulina, subunidad α del factor de elongación 1, gliceraldehído-3-fosfato deshidrogenasa y ARN ribosomal 28S, para determinar los genes más adecuados, en juveniles
de Crassostrea gigas alimentado con una dieta mixta de Gymnodinium catenatum y Prorocentrum lima en comparación con una dieta no tóxica de Isochrysis galbana. Los resultados mostraron que β tub y ef1 α fueron los genes más estables para C. gigas alimentado con una dieta mixta de I. galbana y P. lima; los genes más estables para los ostiones alimentados con I. galbana y G. catenatum fueron gapdh y 28S rRNA. Además, la selección de los genes de referencia durante la exposición a dinoflagelados tóxicos se verificó analizando el nivel de expresión de los genes blanco tripsina y citocromo c oxidasa I. El presente estudio será de gran utilidad para futuros estudios sobre análisis de expresión génica en juveniles de C. gigas.

Downloads

Download data is not yet available.

References

Andersen, C.L., Jensen, J.L., Orntoft, T.F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research. 64:5245-5250.

Araya, M.T., Siah, A., Mateo, D., Markham, F., McKenna, P., Johnson, G. 2008. Selection and evaluation of housekeeping genes for haemocytes of soft-shell clams (Mya arenaria) challenged with Vibrio splendidus. Journal Invertebrate Pathology. 99:326-331.

Band-Schmitd, C.J., Bustillos-Guzmán, J., Garate-Lizárraga, I., Lechuga-Deveze, CH., Reinhart, K. 2005. Paralytic shellfish toxin profile in strains of dinoflagellate Gymnodinium catenatum Graham and the scallop Argopecten ventricosus G-B. Sowerby II from Bahia Concepcion. Gulf of California México. Harmful Algae. 4:21-31.

Bustin, S.A. 2002. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology. 29:23-39.

Bustin, S.A., Nolan, T. 2004. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. Journal of Biomolecular Technology. 15:155-66.

Bustin, S.A., Benes, V., Nolan, T., Pfaffl, M.W. 2005. Quantitative real-time RT-PCR-a perspective. Journal of Molecular Endocrinology. 34:597-601.

Bustin, S.A. 2010. Why the need for qPCR publication guidelines? -The case for MIQE. Method. 50: 217-226.

Browne, G.J., Proud, C.G. 2002. Regulation of peptide-chain elongation in mammalian cells. European Journal Biochemistry. 269:5360-5368.

Cellura, C., Toubiana, M., Parrinello, N., Roch, P. 2007. Specific expression of antimicrobial peptide and HSP70 genes in response to heat-shock and several bacterial challenges in mussels. Fish Shellfish Immunology. 22:340-350.

Della Torre, C., Bocci, E., Focardi, S.E., Corsi, I. 2013. Differential ABCB and ABCC gene expression and efflux activities in gills and haemocytes of Mytilus galloprovincialis and their involvement in cadmium response. Marine Environmental Research. 93:1-8.

Dheda, K., Huggett, J.F., Chang, J.S., Kim, L.U., Bustin, S.A., Johnson, M.A. 2005. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem. 344:141-143.

Dheilly, N.M., Lelong, C., Huvet, A., Favrel, P. 2011. Development of a Pacific oyster (Crassostrea gigas) 31,918-feature microarray: identification of reference genes and tissueenriched expression patterns. BMC Genomics. 12:468-77.

Du, Y., Zhang, L., Xu, F., Huang, B., Zhang, G., Li, L. 2013. Validation of housekeeping genes as internal controls for studying gene expression during Pacific oyster (Crassostrea gigas) development by quantitative real-time PCR. Fish Shellfish Immunology. 34:939-945.

Ejiri, S. 2002. Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1- associated nuclear localization. Bioscience Biotechnology. 66:1-21.

Feng, L., Yu, Q., Li, X., Ning, X., Wang, J., Zou, J. 2013. Identification of Reference Genes for qRT-PCR Analysis in Yesso Scallop Patinopecten yessoensis. PLoS ONE. https://doi.org/10.1371/journal.pone.0075609

Guillard, R.R. 1975. In: Smith WL and Chanley MH (Eds) Culture of marine invertebrate animals, Plenum Press, New York.

Gifford, D.J., Caron, D.A. 2000. In: Harris RP et al. (Eds) ICES Zooplankton methodology manual. Academic Press, London.

García-Lagunas, N., Romero-Geraldo, R., Hernandez-Saavedra, N.Y. 2013. Genomics study of the exposure effect of Gymnodinium catenatum, a paralyzing toxin producer, on Crassostrea gigas defense system and detoxification genes. PLoS ONE. https://doi.org/10.1371/journal.pone.0072323

Hallegraeff, G.M. 1995. In: Manual on Harmful Marine Microalgae. Hallegraeff GM, Anderson DM, Cembella AD (Eds) IOC Manuals and Guides No. 33, UNESCO. Paris, France.

Helm, M.M. 2004. Hatchery culture of bivalves. A practical manual. FAO. Fisheries Technical Paper.

Kodama, M. 2010. Paralytic shellfish poisoning toxins: Biochemistry and Origin. ABSM 3:1-38.

Lacroix, C., Coquille, V., Guyomarch, J., Auffret, M., Moraga, D. 2014. A selection of reference genes and early-warning mRNA biomarkers for environmental monitoring using Mytilus spp. as sentinel species. Marine pollution bulletin. 86:304-313.

Livak, K.J., Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT Method. Methods. 25:402-408.

Martin, C.A., Gelbart, M., Fernandez-Gonzalez, R., Kaschube, M., Wieschaus, E.F. 2010 Integration of contractile forces duringtissue invagination. The Journal of Cell Biology. 188:735-739.

Martínez-Escauriaza, R., Lozano, V., Pérez-Paralle, M.L., Pazos, A.J., Sanchez, J.L. 2018 Validation of reference genes in mussel Mytillus galloprovincialis tissues under the presence of okadaic acid. Journal Shellfish Research. 37:93-101.

Morga, B., Arzul, I., Faury, N., Renault, T. 2010. Identification of genes from flat oyster Ostrea edulis as suitable housekeeping genes for quantitative real time PCR. Fish & Shellfish Immunology. 29:937-945.

Mello, D.F., De Oliveira, E.S., Vieira, R.C., Simoes, E., Trevisan, R., Dafre, A.L., Barracco, M.A. 2012. Cellular and transcriptional responses of Crassostrea gigas hemocytes exposed in vibrio to brevetoxin (PbTx-2). Marine Drugs. 10:583–597.

Nascimento, C.S., Barbosa, L.T., Brito, C., Fernandes, R.P.M., Mann, R.S., Pinto, A.P.G., Oliveira, C.H., Dodson, V.M., Guimaraes, F.E.S., Duarte, S.M. 2015. Identification of suitable reference genes for real time quantitative polymerase chain reaction assays on pectoralis major muscle in chicken (Gallus gallus). PLoS ONE. https://doi.org/10.1371/journal.pone.0127935

Nuñez-Vázquez, E., Heredia-Tapia, A., Pérez-Urbiola, J., Alonso-Rodríguez, R., Arellano-Blanco, J., Cordero-Tapia, A., Pérez-Linares, J., Ochoa, J.L. 2003. Evaluation of dinoflagellate toxicity implicated in recent HAB events in the Gulf of California, México. In: Holland P, Rhodes L, Brown L (eds) Proceedings from HABTech. Workshop, APEC. Nelson, New Zealand. No. 906.

Nuñez-Acuña, G., Aballay, A.E., Hegaret, H., Astuya, P.A., Gallardo-Escarate, C. 2013. Transcriptional responses of Mytilus chilensis exposed in vivo to saxitoxin (STX). Journal of Molluscan Studies. 79:323-331.

Pfaffl, M.W., Tichopad, A., Prgomet, C., Neuvians, T.P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnology Letters. 26:509-515.

Renault, T., Faury, N., Barbosa-Solomieu, V., Moreau, K. 2011. Suppression substractive hybridisation (SSH) and real time PCR reveal differential gene expression in the Pacific cupped oyster, Crassostrea gigas, challenged with Ostreid herpesvirus 1. Development Comparative Immunology. 35:725-735.

Rozen, S., Skaletsky, H. 2000. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press. Totowa, NJ.

Saavedra, C., Bachere, E. 2006. Bivalve genomics. Aquaculture. 256:1-14.

Siah, A., Dohoo, C., Mckenna, P., Delaporte, M., Berthe, F.C.J. 2008. Selecting a set of housekeeping genes for quantitative realtime PCR in normal and tetraploid haemocytes of soft-shell clams, Mya arenaria. Fish Shellfish Immunology. 25:202-207.

Sussarellu, R., Fabioux, C., Camacho-Sanchez, M., Le Goic, N., Lambert, C., Soudant, P., Moraga, D. 2012. Molecular and cellular response to short-term oxygen variations in the Pacific oyster Crassostrea gigas. Journal Experimental Marine Biology and Ecology. 412:87-95.

Shumway, S.E. 1990. A review of the effects of algal blooms on shellfish and aquaculture. Journal World Aquaculture Society. 21:65-104.

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van, R.N. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology. 3:1-12.

Volland, M., Blasco, J., Hampel, M. 2017. Validation of reference genes for RT-qPCR in marine bivalve ecotoxicology: Systematic review and case study using copper treated primary Ruditapes philippinarum hemocytes. Aquatic Toxicolgy. 185:86-94.

Yan, L., Su, J., Wang, Z., Yan, X., Yu, R. 2017. Selection of reference genes for expression analysis of Kumamoto and Portuguese oysters and their hybrid. Journal Ocean University China. 16:1139-1147.

Zhang, Y., He, X., Yu, Z. 2011. Two homologues of inhibitor of NF-kappa B (IkB) are involved in the immune defense of the Pacific oyster, Crassostrea gigas. Fish Shellfish Immunology. 30:1354-1361.

Downloads

Published

2020-03-21

How to Cite

Romero Geraldo, R., Hernández Saavedra, N., Fimbres Olivarría, D., & García Lagunas, N. (2020). Validation of suitable reference genes for quantitative real-time PCR normalization in Crassostrea gigas spat stage during toxic dinoflagellates exposure//Validación de genes de referencia adecuados para la normalización de PCR cuantitativa en tiempo real de juveniles de Crassostrea gigas expuestos a dinoflagelados tóxicos. Biotecnia, 22(2), 94–102. https://doi.org/10.18633/biotecnia.v22i2.1250

Issue

Section

Research Articles

Metrics