Uso de vinazas de mezcal para producir metano por co-digestión con estiércol de bovino
DOI:
https://doi.org/10.18633/biotecnia.v24i2.1501Keywords:
agave, agro-industrial waste, biogas, biomethaneAbstract
The best co-digestion ratio between mezcal vinasses and bovine manure was investigated to produce methane.
Five vinasses and bovine manure mixtures in different proportions
were compared (v/v): 25-75, 50-50, 75-25, 100-0, and 0-100, with six replications. As reactors, 496 mL glass
containers with hermetic seal were used, with 300 mL of active volume under mesophilic conditions (36 ± 1 oC) for 10 days. The pH, total solids, and volatile solids of vinasses,
bovine manure, and their mixtures were determined in triplicate.
The methane accumulated volume was greater with the 0-100 and 75-25, followed by the 100-0, with 286.23, 286.40, and 225.48 NmL CH4, respectively. Methane yield was higher with 100-0 and 75-25 with 28.27 and 22.77 NmL CH4 g-1
volatile solids, respectively. The Gompertz bacterial growth
model showed that the micro-organisms adaptation period
in vinasses was longer than in bovine manure. Co-digestion
of vinasses and bovine manure in proportion 75-25 % improved
the methane production by 26.7 % with respect to the digestion of vinasses alone, and reduced the adaptation time
of bacteria to vinasses by 4.12 days.
Downloads
References
Abdoli, M. A. et al. (2014) ‘Methane production from anaerobic co-digestion of maize and cow dung’, Environmental Progress & Sustainable Energy. John Wiley and Sons Inc., 33(2), pp. 597–601. doi: 10.1002/ep.11783.
Akyol, Ç. et al. (2016) ‘Anaerobic co-digestion of cow manure and barley: Effect of cow manure to barley ratio on methane production and digestion stability’, Environmental Progress & Sustainable Energy. John Wiley and Sons Inc., 35(2), pp. 589–595. doi: 10.1002/ep.12250.
Alvarez, R. and Lidén, G. (2009) ‘Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production’, Biomass and Bioenergy, 33(3), pp. 527–533. doi: 10.1016/j.biombioe.2008.08.012.
Angelidaki, I. et al. (2009) ‘Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays’, Water Science and Technology: A Journal of the International Association on Water Pollution Research, 59(5), pp. 927–934. doi: 10.2166/wst.2009.040.
APHA (2012) Standard Methods for the Examination of Water and Wastewater. Washington, DC, USA.
Arreola-Vargas et al. (2016) ‘Biogas production in an anaerobic sequencing batch reactor by using tequila vinasses: Effect of pH and temperature’, Water Science and Technology. IWA Publishing, 73(3), pp. 550–556. doi: 10.2166/wst.2015.520.
Baena González, A. (2014) ‘Aprovechamiento del bagazo de maguey verde (Agave Salmiana) de la agroindustria del mezcal en San Luis Potosí para la producción de hongo ostra (Pleurotus ostreatus)’, Revista Iberoamericana de Ciencias. Available at: http://www.reibci.org/publicados/2014/octubre/0500104.pdf.
Beltran, F. J. et al. (2001) ‘Treatment of High Strength Distillery Wastewater (Cherry Stillage) by Integrated Aerobic Biological Oxidation and Ozonation’, Biotechnology Progress. American Chemical Society (ACS), 17(3), pp. 462–467. doi: 10.1021/bp010021c.
Cervantes Carrillo, F. J. (2008) Comunicación, AMC - Reconoce la AMC al líder del proyecto que estudia catalizadores para acelerar la degradación de contaminantes en acuíferos. Available at: http://www.comunicacion.amc.edu.mx/comunicados/reconoce-la-amc-al-lider-del-proyecto-que-estudia-catalizadores-para-acelerar-la-degradacion-de-contaminantes-en-acuiferos (Accessed: 26 November 2018).
Chavez-Parga, M. D. C., Pérez Hernández, E. and González Hernández, J. C. (2016) ‘Revisión del agave y el mezcal’, Revista Colombiana de Biotecnología. Universidad Nacional de Colombia, 18(1). doi: 10.15446/rev.colomb.biote.v18n1.49552.
Chávez Sifontes, M. and Domine, M. E. (2010) ‘Lignina, estructura y aplicaciones métodos de despolimerización para la obtención de derivados aromáticos de interés industrial’, Avances en Ciencias e Ingeniería, ISSN-e 0718-8706, Vol. 4, No. 4, 2013, págs. 15-46. Executive Business School, 4(4), pp. 15–46. Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=4710101 (Accessed: 5 December 2018).
CRM (2018) INFORME ESTADÍSTICO 2018. Oaxaca de Juárez. Available at: http://www.crm.org.mx/PDF/INF_ACTIVIDADES/INFORME2018.pdf (Accessed: 25 June 2019).
Cruz-Salomón, A. et al. (2017) ‘Biogas production potential from a native beverage vinasse of Mexico’, Waste Technology, 5(1), pp. 9–14. doi: 10.12777/WASTECH.5.1.%P.
Espinoza-Escalante, F. M. et al. (2009) ‘Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila: The effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane’, Biomass and Bioenergy, 33(1), pp. 14–20. doi: 10.1016/j.biombioe.2008.04.006.
Gómez, A. V. et al. (2019) ‘CO-DIGESTION OF Agave angustifolia Haw BAGASSE AND VINASSES FOR BIOGAS PRODUCTION FROM MEZCAL INDUSTRY’, Revista Mexicana de Ingeniería Química. Universidad Autonoma Metropolitana, 18(3), pp. 1073–1083. doi: 10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/gomez.
Holliger, C. et al. (2016) ‘Towards a standardization of biomethane potential tests’, Water Science and Technology, 74(11), pp. 2515–2522. doi: 10.2166/wst.2016.336.
Jiménez, A. M. et al. (2006) ‘Kinetic analysis of the anaerobic digestion of untreated vinasses and vinasses previously treated with Penicillium decumbens’, Journal of Environmental Management. Academic Press, 80(4), pp. 303–310. doi: 10.1016/J.JENVMAN.2005.09.011.
Khanal, S. K. (2009) Anaerobic Biotechnology for Bioenergy Production: Principles and Applications, Anaerobic Biotechnology for Bioenergy Production: Principles and Applications. Wiley-Blackwell. doi: 10.1002/9780813804545.
López-Velarde, M. et al. (2019) ‘INOCULUM ADAPTATION FOR THE ANAEROBIC DIGESTION OF MEZCAL VINASSES’, Revista Internacional de Contaminación Ambiental, 35(2), pp. 447–458. doi: 10.20937/RICA.2019.35.02.15.
López Velarde Santos, M. et al. (2020) ‘Effect of inoculum source on the anaerobic digestion of mezcal vinasses at different substrate-inoculum ratios’, Revista Internacional de Contaminacion Ambiental. Centro de Ciencias de la Atmosfera, UNAM, 36(1), pp. 81–95. doi: 10.20937/RICA.2020.36.53276.
Lorenzo-Acosta, Y. and Obaya-Abreu, M. (2005) ‘La digestión anaerobia. Aspectos teóricos. Parte I’, ICIDCA. Sobre los Derivados de la Caña de Azúcar, XXXIX(1), pp. 35–48. Available at: https://www.redalyc.org/articulo.oa?id=223120659006.
Michel-Cuello, C. et al. (2008) ‘Quantitative characterization of nonstructural carbohydrates of mezcal agave (Agave salmiana Otto ex Salm-Dick)’, Journal of Agricultural and Food Chemistry, 56(14), pp. 5753–5757. doi: 10.1021/jf800158p.
Parra-Orobio, B. et al. (2015) ‘Efecto de la relación sustrato-inóculo sobre el potencial bioquímico de metano de biorresiduos de origen municipal’, Ingeniería, Investigación y Tecnología. Universidad Nacional Autonoma de Mexico, 16(4), pp. 515–526. doi: 10.1016/j.riit.2015.09.004.
Parra-Orobio, B. A. et al. (2014) ‘Influencia del pH sobre la digestión anaerobia de biorresiduos de origen municipal’, Revista U.D.C.A Actualidad & Divulgación Científica, 17(2 SE-INGENIERÍAS). doi: 10.31910/rudca.v17.n2.2014.421.
Paul, S., Dutta, A. and Defersha, F. (2018) ‘Biocarbon, biomethane and biofertilizer from corn residue: A hybrid thermo-chemical and biochemical approach’, Energy. Pergamon, 165, pp. 370–384. doi: 10.1016/J.ENERGY.2018.09.182.
Pibul, P. and Towprayoon, S. (2015) ‘Acid-stressed control of market waste anaerobic digestion using pH adjustment’, Environmental Progress & Sustainable Energy. John Wiley and Sons Inc., 34(1), pp. 132–138. doi: 10.1002/ep.11973.
Robles-González, V. et al. (2012) ‘Treatment of mezcal vinasses: A review’, Journal of Biotechnology. Elsevier, 157(4), pp. 524–546. doi: 10.1016/J.JBIOTEC.2011.09.006.
Rodríguez, A. and De La Cerna, C. (2017) ‘El mezcal, su producción y tratamiento de residuos’, Alianzas y Tendencias, 2(8), pp. 10–14.
Vera Guzmán, A. M., Santiago García, P. A. and López, M. G. (2009) ‘COMPUESTOS VOLÁTILES AROMÁTICOS GENERADOS DURANTE LA ELABORACIÓN DE MEZCAL DE Agave angustifolia Y Agave potatorum’, Revista fitotecnia mexicana. Sociedad Mexicana de Fitogenética A.C., 32(4), pp. 273–279. Available at: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73802009000400005&lng=es&nrm=iso&tlng=es (Accessed: 24 October 2019).
Villalobos, F., Robles, V. and Poggi, H. (2009) Disminución de la materia orgánica biodegradable presente en vinazas mezcaleras mediante digestión anaerobia. Universidad Tecnológica de la Mixteca. Available at: http://jupiter.utm.mx/~tesis_dig/10960.pdf (Accessed: 1 March 2019).
Víquez, J. (2017) ‘Medición de metano a bajo costo’, in. Available at: www.viogaz.com (Accessed: 25 October 2019).
Ware, A. and Power, N. (2017) ‘Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions’, Renewable Energy. Elsevier Ltd, 104, pp. 50–59. doi: 10.1016/j.renene.2016.11.045.
Yi, J. et al. (2014) ‘Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: Performance and microbial characteristics analysis’, PLoS ONE. Public Library of Science, 9(7). doi: 10.1371/journal.pone.0102548.
Zwietering, M. et al. (1990) ‘Modeling of the bacterial growth curve’, Applied and Environmental Microbiology, 56(6), pp. 1875–1881. doi: 10.1111/j.1472-765X.2008.02537.x.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.