Proposal for a metabolic syndrome model in CD1 mice induced with a hypercaloric diet
Metabolic syndrome model in CD1 mice
DOI:
https://doi.org/10.18633/biotecnia.v25i1.1744Keywords:
Hypercaloric diet, metabolic syndrome, murine model, obesityAbstract
Metabolic diseases, including obesity and type 2 diabetes mellitus, represent a serious health and death problem in Mexico. The World Health Organization (WHO) and other associations such as the International Diabetes Federation (IDF) and the National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATP III) define the Metabolic Syndrome (MetS), as the set of metabolic alterations that lead to the development of obesity, hypertension, and diabetes mellitus. The objective of this study was to develop a model of MS in CD1 rodents using a hypercaloric diet and to determine the advantages and / or disadvantages compared to other murine models. Female and male CD1 mice were divided into 2 groups by gender, a control group, and another group with a hypercaloric diet for 10 weeks. The results obtained showed that the hypercaloric diet is efficient to develop the metabolic alterations present in MetS, better results were observed in male mice, which is why the use in this genus is suggested to avoid the hormonal changes present in adult females
Downloads
References
Breschi, A., Gingeras, T. R., & Guigó, R. 2017. Comparative transcriptomics in human and mouse. Nature Reviews Genetics (Vol. 18, Issue 7, pp. 425–440). Nature Publishing Group. https://doi.org/10.1038/nrg.2017.19
Breslin, W.L., Strohacker, K., Carpenter, K.C., Esposito, L. & McFarlin, B.K. 2010. Weight gain in response to high-fat feeding in CD-1 male mice, Laboratory Animals, 44: 231–237. DOI: 10.1258/la.2010.009114
ENSANUT. 2018. Encuesta Nacional de Salud y Nutrición. Disponible en https://ensanut.insp.mx/encuestas/ensanut2018/doctos/informes. Acceso: Enero 2022, 1–41.
Fuchs, T., Loureiro, M. de P., Macedo, L. E., Nocca, D., Nedelcu, M., & Costa-Casagrande, T. A. 2018. Animal models in metabolic syndrome. Revista do Colegio Brasileiro de Cirurgioes (Vol. 45, Issue 5). Colegio Brasileiro de Cirurgioes. https://doi.org/10.1590/0100-6991e-20181975
Furnes, M. W., Zhao, C. M., & Chen, D. 2009. Development of obesity is associated with increased calories per meal rather than per day. A study of high-fat diet-induced obesity in young rats. Obesity Surgery, 19(10), 1430–1438. https://doi.org/10.1007/s11695-009-9863-1
Gutiérrez-Solis, A. L., Datta Banik, S., & Méndez-González, R. M. 2018. Prevalence of Metabolic Syndrome in Mexico: A Systematic Review and Meta-Analysis. Metabolic Syndrome and Related Disorders, 16(8), 395–405. https://doi.org/10.1089/met.2017.0157
Hernández-Ruiz, Z., Rodríguez-Ramírez, S., Hernández-Cordero, S., & Monterrubio-Flores, E. 2018. Patrones dietéticos y síndrome metabólico en mujeres con exceso de peso de 18 a 45 años de edad. Salud Publica de Mexico, 60(2), 158–165. https://doi.org/10.21149/8847
Lemieux, I., & Després, J. P. 2020. Metabolic syndrome: Past, present and future. In Nutrients (Vol. 12, Issue 11, pp. 1–7). MDPI AG. https://doi.org/10.3390/nu12113501
Lutz, T. A., & Woods, S. C. 2012. Overview of animal models of obesity. Current Protocols in Pharmacology, SUPPL.58. https://doi.org/10.1002/0471141755.ph0561s58
Luzi, L., Bucciarelli, L., Ferrulli, A., Terruzzii, I., & Massarini, S. 2021. Obesity and coVid-19: The ominous duet affecting the renin-angiotensin system. In Minerva Endocrinology (Vol. 46, Issue 2, pp. 193–201). Edizioni Minerva Medica. https://doi.org/10.23736/S2724-6507.20.03402-1
McCracken, E., Monaghan, M., & Sreenivasan, S. 2018. Pathophysiology of the metabolic syndrome. Clinics in Dermatology, 36(1), 14–20. https://doi.org/10.1016/j.clindermatol.2017.09.004
Muñoz, C., Bedoya, B., & Veásquez RC. 2013. An approach to the etiology of metabolic syndrome. Colombia Médica, 44, 57–63.
NORMA Oficial Mexicana NOM-062-ZOO-1999, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Agosto, 2001. https://www.gob.mx › uploads › attachment › file
Oh, S., Lee, S. Y., Kim, D. Y., Woo, S., Kim, Y., Lee, H. J., Jang, H. B., Park, S. I., Park, K. H., & Lim, H. 2021. Association of dietary patterns with weight status and metabolic risk factors among children and adolescents. Nutrients, 13(4). https://doi.org/10.3390/nu13041153
Padilla-Fernández, B., García-Cenador, M. B., Rodríguez-Marcos, P., López-Marcos, J. F., Antúnez-Plaza, P., Silva-Abuín, J. M., López-Montañés, D., García-Criado, F. J., & Lorenzo-Gómez, M. F. 2017. Modelo murino experimental de cáncer renal. Actas Urologicas Espanolas, 41(7), 445–450. https://doi.org/10.1016/j.acuro.2016.11.005
Palmisano, B. T., Zhu, L., & Stafford, J. M. 2017. Role of estrogens in the regulation of liver lipid metabolism. In Advances in Experimental Medicine and Biology (Vol. 1043, pp. 227–256). Springer New York LLC. https://doi.org/10.1007/978-3-319-70178-3_12
Pasquarelli-do-Nascimento, G., Braz-de-Melo, H. A., Faria, S. S., Santos, I. de O., Kobinger, G. P., & Magalhães, K. G. 2020. Hypercoagulopathy and Adipose Tissue Exacerbated Inflammation May Explain Higher Mortality in COVID-19 Patients With Obesity. In Frontiers in Endocrinology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fendo.2020.00530
Perlman, R. L. 2016. Mouse Models of Human Disease: An Evolutionary Perspective. Evolution, Medicine, and Public Health, eow014. https://doi.org/10.1093/emph/eow014
Reyna-Villasmil, E., Guerra-Velásquez, M., Reyna-Villasmil, N., Mejía-Montilla, J., & Flores-Montero, I. 2007. Efectos del estradiol y acetato de noretisterona sobre los lípidos y la lipoproteína (a) sérica en posmenopáusicas ooforectomizadas. Rev. Obstet Ginecol Venez, 1, 41–46. https://www.researchgate.net/publication/262590698
Rodríguez-Calvo, R., Samino, S., Guaita-Esteruelas, S., Martínez-Micaelo, N., Heras, M., Girona, J., Yanes, O., Correig, X., & Masana, L. 2020. Plasma glucose, triglycerides, VLDL, leptin and resistin levels as potential biomarkers for myocardial fat in mice. Clinica e Investigacion En Arteriosclerosis, 32(1), 8–14. https://doi.org/10.1016/j.arteri.2019.05.001
Urina-Jassir, D., Urina-Jassir, M., Urina-Triana, M., Mantilla-Morrón, M., Urina-Triana, M., & Galeano-Muñoz, L. 2018. La prevalencia del síndrome metabólico en mujeres postmenopáusicas. Revista Latinoamericana de Hipertensión, 13, 1–6.
Varma, M., Chai, J.-K., Meguid, M. M., Laviano, A., Gleason, J. R., Yang, Z.-J., & Blaha, V. 1999. Effect of estradiol and progesterone on daily rhythm in food intake and feeding patterns in Fischer rats. In Physiology & Behavior (Vol. 68).
Vera, F., Pino, J., Campos-Cabaleiro, V., Ruiz-Fernández, C., Mera, A., Gonzalez-Gay, M. A., Gómez, R., & Gualillo, O. 2018. Obesity, fat mass and immune system: Role for leptin. Frontiers in Physiology (Vol. 9, Issue JUN). Frontiers Media S.A. https://doi.org/10.3389/fphys.2018.00640
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.