The Cyanobacteria as alternative for biological fertilization for maize crop

Authors

  • Gabriela A. Santiago-Juárez Ingeniería Ambiental, Universidad del Mar, campus Puerto Ángel. San Pedro Pochutla, Oaxaca. México.
  • Ma Nieves Trujillo-Tapia Instituto de Ecología, Universidad del Mar, campus Puerto Ángel. San Pedro Pochutla, Oaxaca. México.
  • Eustacio Ramirez-Fuentes Instituto de Recursos, Universidad del Mar, campus Puerto Ángel. San Pedro Pochutla, Oaxaca. México.

DOI:

https://doi.org/10.18633/biotecnia.v27.2467

Keywords:

environmental pollution, cyanospray, environmental biotechnology

Abstract

The continuous use of chemical fertilizers in agricultural fields causes soil degradation and environmental pollution, in addition to causing damage to human health. Nitrogen fertilizers are not very efficient, more than 50% of the applied N is lost by leaching, adsorption to soil particles or NH3 volatilization into the atmosphere; and its negative effect causes soil acidification, eutrophication of water bodies and loss of biodiversity in ecosystems. The use of biofertilizers based on nitrogen-fixing cyanobacteria is a promising alternative for agricultural production, they are also a potential source of useful fertilization to replace chemical fertilizers and promote soil fertility. The objectives of the work were to compare the biofertilizer vs chemical fertilizer, and establish the best application site for the biofertilizer. Maize variety V-524 was planted in pots in a sandy loam soil, a 20% (v/v) solution of the biofertilizer was sprinkled every 8 days on the soil, foliar and, combined; control was without biofertilizer. Biochemical indicators of the plant and N soil were analyzed. According to the results obtained, cyanobacteria provide the nitrogen required by the plant; the growth rate of corn in treatment C/B was 1.09 times higher than treatment S/B. We conclude that cyanobacteria are an alternative for biological fertilization in maize cultivation, reducing the use of chemical fertilizer by up to 50%.

Downloads

Download data is not yet available.

References

Alonso-Santos, E., Cervantes-Hernandez, P., Trujillo-Tapia, Ma. N. y Ramirez-Fuentes, E. 2021. Bioen-capsulado de Fischerella sp.: crecimiento, metabolismo y concentración de inóculo. TIP Revista Espe-cializada en Ciencias Quimico-Biológicas. 24: 1-9.

Agehara, S. y Warncke, D.D. 2005. Soil Moisture and Temperature Effects on Nitrogen Release from Organic Nitrogen Sources. Soil Sci. Soc. Am. J. 69: 1844-1855.

Bhardwaj, D., Wahid. A.M., Kumar S.R. y Tuteja, N. 2014. Biofertilizers function as key player in sus-tainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories. 13 (66): 1-10.

Bhuvaneshwari, B., Subramaniyan, V. y Malliga, P. 2011. Comparative studies cyanopith and cyanospray biofertilizer with chemical fertilizer on sunflowers (Helianthus annus L.). International Journal of En-vironmental Sciences. 1(7): 1522-1532.

Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cin-derby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J., Fenn, M., Gilliam, F., Nordin, A., Par-do, L. y Vrie, W.D. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications. 20: 30-59.

Bundy, L.G. y Meisinger, J.J. 1994. Nitrogen availability indices. In: Weaver, R. W.; Angle, J. S. and Bottomley, P. S. (eds.). Methods of Soil Analysis: Part 2. Microbiological and Biochemical Properties. Soil Science Society of America, Inc. USA. 951-984 pp.

Bünemann, E.K., Bongiorno, G., Bai, Z., Creamer, R.E., de Deyn, G., de Goede, R., Fleskens, L., Geis-sen, V., Kuyper, T.W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J.W. y Brussaard, L. 2018. Soil quality –A critical review. Soil Biol Biochem. 120: 106-125.

Colección de microorganismos del Centro Nacional de Recursos Genéticos (CM-CNRG). Tepatitlán de Morelos, Jal. México.

Craine, J.M., Morrow, C. y Fiere, N. 2007. Microbial nitrogen limitation increases decomposition. Ecology. 88: 2105-2113.

Dineshkumar, R., Subramanian, J., Gopalsamy, J., Jayasingam, P., Arumugam, A., Kannadasan, S. y Sapathkumar, P. (2019). The impact of Using Microalgae as Biofertilizer in Maize (Zea mays L.). Waste Biomass Valor. 10: 1101-1110.

Ding, L., Wang, K.J., Jiang, G.M., Biswas, D.K., Xu, H., Li, F. y Li, Y.H. 2005. Effects of Nitrogen De-ficiency on Photosynthetic Traits of Maize Hybrids Released in Different Years. Annals of Botany. 96: 925-930.

Do Nascimento, M., Battaglia, M.E., Sánchez, R.L., Ambrosio, R., Arruebarrena, Di P.A. y Curatti, L. 2019. Prospects of using biomass of N2-fixing cyanobacteria as an organic fertilizer and soil condition-er. Algal Research. 43: 101652.

Fallah, S. y Tadayyon, A. 2010. Uptake and nitrogen efficiency in forage maize: effects of nitrogen ad planta density. Agrociencias. 44: 549-560.

Foster, J.C. 1995a. Soil sampling, handling, storage and analysis. In: “Methods in Applied Soil Microbi-ology and Biochemistry. Kassem, A. and Nannipieri, P. (eds.). Academic Press, San Diego, CA. 49-51 pp.

Foster, J.C. 1995b. Soil nitrogen. In: “Methods in Applied Soil Microbiology and Biochemistry. Kassem, A. and Nannipieri, P. (eds.). Academic Press, San Diego, CA. 79-87 pp.

García, J.P. y Espinosa, J. 2008. Relación del índice de verdor con la aplicación de nitrógeno en diez híbridos de maíz. Informaciones Agronómicas. 71: 9-14.

Gheda, S.F. y Ahmed, D.A. 2015. Improved soil characteristics and wheat germination as influenced by inoculation of Nostoc kihlmani and Anabaena cylindrical. Rend. Fis. Acc. Lincei. 26: 121-131.

Giacometti, C., Demyan, M.S., Cavani, L., Marzadori, C., Ciavatta, C. y Kandeler, E. 2013. Chemical and microbiological soil quality indicators and their potential to differentiate regimes in temperate agroecosystems. Applied Soil Ecology. 64: 32-48.

Hofman, G. y Van Cleemput, O. 2004. Soil and Plant Nitrogen. International Fertilizer Industry Associa-tion. Paris, France. 48 pp.

Hokmalipour, S. y Hamele, D.M. 2011. Physiological Growth Indices in Corn (Zea mays L.) Cultivars as Affected by Nitrogen Fertilizer Levels. World Applied Sciences Journal. 15(12):1800-1805.

Hunt, R. 2003. Growth analysis, individual plants. In: Thomas, B.; Murphy, D. J.; Murray, D. (eds.). En-cyclopedia of applied plant sciences. London. Academic Press. 588-596 pp.

Hussain, A. y Hasnain, S. 2011. Phytostimulation and biofertilization in wheat by cyanobacteria. J. Ind Microbiol Biotechnol. 38: 85-92.

Hynes, R.K., Jans, D.C., Bremer, E., Lupwayi, N.Z., Rice, W.A., Clayton, G.W. y Collins, M.M. 2001. Rhizobium population dynamics in the pea rhizosphere of rhizobial inoculants strain applied in differ-ent formulations. Can J. Microbiol. 47: 595-600.

Irisarri, P., Gonnet, S., Deambrosi, E. y Monza, J. 2006. Cyanobacterial inoculation and nitrogen fertiliza-tion in rice. World Journal of Microbiology and Biotechnology. 2: 237-242.

Kuepper, G. 2003. Foliar fertilization. Appropriate Technology Transfer for Rural Areas. www.attra.ncat.org. Consultado 16 de mayo 2024

Lan, Sh., Wu, L., Zhang, D. y Hu, Ch. 2013. Assessing Level of Development and Successional Stages in Biological Soil Crusts with Biological Indicators. Microb. Ecol. 66: 394-403.

Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. y Gamier, J. 2014. 50-year trends in nitrogen use effi-ciency of world cropping systems: the relationship between yield and nitrogen input to cropland. En-vironmental Research Letters. 9: 1-9.

Lichtenhaler, A.L., Nelson, D.L. y Cox, M.M. 1995. El estrés y la medida del estrés en plantas. In: La Ecofisiología vegetal una ciencia de síntesis. Reigosa, J. M.; Pedrol, N. y Sánchez, A. (comps.). Ed. Thomson. 59-107 pp.

Lowry, O.H., Rosenbrough, N.J., Farr, A.L. y Randall, R.J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry. 193: 265-272. Downloaded from http://www.jbc.org/

Lu, J., Bai, Z., Velthof, G.L., Wu, Z., Chadwick, D. y Ma, L. 2019. Accumulation and leaching of nitrate in soils in wheat-maize production in China. Agricultural Water Management. 212: 407-415.

Mackinney. 1941. Absorption of light by chlorophyll solutions. Journal of Biological Chemistry. 140: 315-332. Downloaded from http://www.jbc.org/

Maqubela, M.P., Mnkeni, P.N.S., Malam, Issa O., Pardo, M.T. y D’Acqui, L.P. 2009. Nostoc cyanobacte-rial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil. 315: 79-92.

Mendoza-Elos, M., Mosqueda-Villagómez, C., Rangel-Lucio, J.A., López-Benites, A., Rodríguez-Herrera, S.A., Latournerie-Moreno, L. y Moreno-Martínez, E. 2006. Densidad de población y fertilización ni-trogenada en la clorofila, material seca y rendimiento de maíz normal y QPM. Agricultura Técnica en México. 32: 89-99.

Miransari, M. 2010. Biological fertilization. In: Current Research and Education Topics. Méndez-Villa, A. (Ed). Applied Microbiology and Microbial Biotechnology. 168-176 pp.

Nain, L., Rana, A., Joshi, M., Jadhav, S.D., Kumar, D., Shivay, Y.S., Paul, S. y Prasanna, R. 2010. Eval-uation of synergistic effects of bacterial and cyanobacterial strains as biofertilizer for wheat. Plant Soil. 331: 217-230.

Norma Oficial Mexicana NOM-021-SEMARNAT-2000. Especificaciones de fertilidad, salinidad y clas-ificación de suelos, estudio, muestreo y análisis. Secretaria del Medio Ambiente y Recursos Naturales. México. Diario Oficial de la Federación. México, 31 de diciembre 2002.

Noreña-Caro, D. y Benton, M.G. 2018. Cyanobacteria as photoautotrophic biofactories of high-value chemicals. Journal of CO2 Utilization. 28: 335-366.

Osman, M.E.H., El-Sheekh, M.M., El-Naggar, A.H. y Gheda, S.F. 2010. Effect of two species of cyano-bacteria as biofertilizer on some metabolic activities, growth and yield of pea plant. Biol Fertil Soils. 46: 861-875.

Pereira, I., Ortega, R., Barrientos, L., Moya, M., Reyes, G. y Kramm, V. 2009. Development of bioferti-lizer base on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. Journal of Applied Physiology. 21: 135-144.

Poffenbarger, H., Coyne, M.S. y Frye, W.W. 2018. Nitrogen in Soils/Cycle. Earth Systems and Environ-mental Sciences. July 1-13.

Prasanna, R., Joshi, M., Rana, A., Shivay, Y.S. y Nain, L. 2012. Influence of co-inoculation of bacte-ria-cyanobacteria on crop yield and C–N sequestration in soil under rice crop. World J. Microbiol. Bio-technol. 28(3): 1223–1235.

Renuka, N., Guldhe, A., Prasanna, R., Singh, P. y Bux, F. 2018. Microalgae as multi-functional options in modern agriculture: current trends, prospects, and challenges. Biotechnology Advances. 36(4): 1255-1273.

Rossi, F., Li, H., Liu, Y. y De Philippis, R. 2017. Cyanobacterial inoculation (cyanobacterisation): Per-spectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal. Earth-Science Reviews. 171: 28-43.

Shen, W., Ni, Y., Gao, N., Bian, B., Zheng, S., Lin, X. y Chu, H. 2016. Bcterial community composotion is shaped by soil secondary salinization and acidification brought on by high nitrogen fertilization. Ap-plied Soil Ecology. 108: 76-83.

Schulz, T.J. y Thelen, K.D. 2008. Soybean seed inoculants and fungicidal seed treatment effects on soy-bean. Crop Sci. 48: 1975-1983.

Shrestha, J., Chaudhary, A. y Pokhrel, D. 2018. Application of nitrogen fertilizer in maize in Southern Asia: a review. Peruvian journal of Agronomy. 2(2): 22-26.

Singh, J.S., Pandey, V.C. y Singh, D.P. 2011. Efficient soil microorganisms: A new dimension for sus-tainable agriculture and environmental development. Agriculture, Ecosystems and Environmental. 140: 339-353.

Subramaniyan, V., Krishna, S.M. y Malliga, P. 2012. Analysis of biochemical and yield parameters of Zea mays (corn) cultivated in the field supplement with coir pith based cyanobacterial biofertilizer. Journal of Algal Biomass Utilization. 3(3): 54-57.

Sun, B., Bai, Z., Xue, L., Zhang, S., Wei, Y., Zhang, Z., Zhuang, G. y Zhuang, X. 2020. Bacillus subtilis biofertilizer mitigating agricultural ammonia emisión and shifting soil nitrogen cycling microbiomes. Environmental International. 144: 105989.

Tiwari, O.N., Bhunia, B., Mondal, A., Gopikrishna, K. y Indrama, T. 2019. System metabolic engineering of exopolysaccharide-producing cyanobacteria in soil rehabilitation by inducing the formation of bio-logical soil crusts: A review. Journal of Cleaner Production. 211: 70-82.

Trishna, M., Surajit, B., Madhurankhi, G., Purnita, B., Bannhi, D., Abhrajyoti, G. y Prosun, T. 2017. Bio-fertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res. 24: 3315-3335.

Trujillo-Tapia, M. N. y Ramírez-Fuentes, E. (2015). Biofertilizer: An Alternative to Reduce Chemical Fer-tilizer in Agriculture. Journal of Global Agriculture and Ecology. 42(2): 99-103.

Trujillo-Tapia, M. N., Ramirez-Fuentes, E. y Cervantes-Hernández, P. 2016. Presence and variation of cyanobacteria related to the physical properties of soil on the coast of Oaxaca, México. Tropical Ecol-ogy. 57(3): 503-511.

Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255: 571–586.

Xu, R., Tian, H., Pan, S., Prior, S.A., Feng, Y., Batchelor, W.D., Chen, J. y Yang, J. 2019. Global ammo-nia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and pro-cess-based estimates and uncertainty. Glob. Change Biol. 25: 314–326.

Xi, D., Zhao, B., Wang, S. y Duan, L. 2020. Benefit of China's reduction in nitrogen oxides emission to natural ecosystems in East Asia with respect to critical load exceedance. Environ. Int. 136: 105468.

Yu, H., Ling, N., Wang, T., Zhu, C., Wang, Y., Wang, S. y Gao, Q. 2019. Response of soil biological traits and bacterial communities to nitrogen fertilization mediate maize yields across three soil types. Soil & Tillage Research. 185: 61-69.

Zeng, J., Liu, X., Song, L., Lin, X., Zhang, H., Shen, C. y Chu, H. 2016. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol Bio-chem. 97: 41-49.

Zhao, Z.B., He, J.Z., Geisen, S., Han, L.L., Wang, J.T., Shen, J.P., Wei, W.X., Fang, Y.T., Li, P.P. y Zhang, L.M. 2019. Protist communities are more sensitive to nitrogen fertilization tan other micro-organisms in diverse agricultural soils. Microbiome. 7-33.

Graphical abstract

Published

2025-09-18

How to Cite

Santiago-Juárez, G. A., Trujillo-Tapia, M. N., & Ramirez-Fuentes, E. (2025). The Cyanobacteria as alternative for biological fertilization for maize crop . Biotecnia, 27, e2467. https://doi.org/10.18633/biotecnia.v27.2467

Issue

Section

Research Articles

Metrics