la Evaluación de películas comestibles de quitosano, agar y tomillo para mantener la calidad de frutos de aguacate ‘Hass’ durante su almacenamiento

Autores/as

  • Tomás J. Madera-Santana Centro de Investigación en Alimentación y Desarrollo A.C. Hermosillo, Sonora, 83304, México.
  • Víctor M. Toledo-López Tecnológico Nacional de México/Instituto Tecnológico de Mérida
  • Karla Martinez-Robison Centro de Investigación en Alimentación y Desarrollo A.C. Hermosillo, Sonora, 83304, México
  • Víctor Rejón-Moo Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, 97310 Mérida, Yucatán, México
  • Judith Fortiz Hernández Centro de Investigación y Desarrollo, A.C.

DOI:

https://doi.org/10.18633/biotecnia.v25i1.1728

Palabras clave:

Recubrimientos comestibles, quitosano, tomillo, películas, vida de anaquel

Resumen

En este trabajo se elaboraron películas comestibles (PCs) a base de quitosano (Q), agar (A) y tomillo (T), en cuatro diferentes formulaciones (Q, A, QA y QAT). A las PCs se les evaluaron propiedades mecánicas (tensión y elongación a la ruptura), propiedades estructurales (espectroscopía de infrarrojo por FTIR), propiedades térmicas (análisis termogravimétrico), propiedades de transporte (permeabilidad al vapor de agua) y análisis morfológico (microscopía electrónica de barrido). Las PCs de QA y QAT destacaron por su resistencia a la tensión, transparencia, velocidad de transmisión al vapor de agua y permeancia, así como la mayor capacidad antioxidante. Se evaluó el efecto de la aplicación de los recubrimientos comestibles (RCs) de QA y QAT en la calidad de frutos de aguacate “Hass” durante 13 días de almacenamiento a 25 °C. Se evaluaron periódicamente en los frutos las variables de pérdida de peso, tasa de respiración, producción de etileno, apariencia visual y pudriciones. La aplicación de los RCs al fruto redujo su pérdida de peso y extendió su vida de anaquel. Los RCs les confirieron a los frutos una barrera al vapor de agua, reduciendo la pérdida de peso en 40%. Así mismo, se disminuyó la incidencia de pudriciones de los frutos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguilar-Méndez, M., San Martin-Martínez, E., Cruz-Orea, T. y Jaime-Fonseca, M. 2008. Gelatine starch films: Physicochemical properties and their application in extending the postharvest shelf life of avocado (Persea americana). Journal of the Science of Food and Agriculture. 88(2):185-193. doi:10.1002/jsfa.3068.

Arpaia, M. 2009. Manual internacional de la calidad del aguacate. Pub. 25. Postharvest Technology Center. University of California, Davis CA. http://postharvest.ucdavis.edu.

Adiletta G., Di Mateo M. y Petriccione, M. 2021. Multifunctional role of chitosan edible coating on antioxidant systems in fruit crops: A Review. International Journal of Molecular Sciences 22:2633. doi:10.3390/ijms22052633.

Al-Tayyar N.A., Youssef A.M. y Al-Hindi R.R. 2020. Edible coating and antimicrobial nanoemulsions for enhancing shelf life and reducing food borne pathogens of fruits and vegetables a review. Sustainable Materials and Technologies 40,20 p.e00215.

Altiok D., Altiok E. y Tihminlioglu, F. 2010. Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing. Journal of Materials Science: Materials in Medicine 21:2227-2236. doi:10.1007/s10856-010-4065-x.

Badawy, E.M. y Rabea I. 2011. A biopolymer chitosan and its derivatives promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrates Chemistry. Vol. 29:460381. doi:10.1155/2011/460381.

Balau L., Lisa G., Popa M.I., Tura V. y Melnig V. 2004. Physico-chemical properties of chitosan films. Central European Journal of Chemistry 2(4), 638-647. doi:10.2478/BF02482727.

Bourtoom, T. 2008. Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan. Songklanakarin Journal of Science and Technology 30 (Suppl.1):149-165.

Brand-Williams, W., Cuvelier M.E. y Berset, C. 1995. Use of a free radical method to evaluate antioxidants activity. LWT-Food Sciences and Technology 28(1):25-30. doi.org/10.1016/S0023-6438(95)80008-5.

Campa-Siqueiros P., Vargas-Aispuro I., Quintana-Owen P., Freile-Pelegrin Y., Azamar-Barrios J. y Madera-Santana, T. 2020. Physicochemical and transport-properties of biodegradable agar films impregnated with natural semichemical based on hydroalcoholic garlic extract. International Journal of Biological Macromolecules 151:27-35. doi:10.10/j.ijbiomac.2020.02.158.

El Ghaouth, A., Arul, J., Asselin, A. y Benhamou, N. 1992. Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycological Research. 96(9): 769-779.

Escárcega-Galaz, A., Sánchez-Machado, D., López-Cervantes, J., Sánchez-Silva, A., Madera-Santana, T. y Paiseiro-Losada, P. 2018. Mechanical, structural and physical aspects of chitosan-based films as antimicrobial dressings. International Journal of Biological Macromolecules 116:472-481. doi.org/10.1016/j.ijbiomac.2018.04.149

Fang, Y., Tung, M., Britt, I., Yada, S. y Dalgleish, D. 2002. Tensile and barrier properties of edible films made from whey proteins. JFS: Food Engineering and Physical Properties. 67, 188-193. https://doi.org/10.1111/j.1365-2621.2002.tb11381.x.

Genskowsky E., Puente L.A., Pérez-Alvarez J.A., Fernandez-Lopez J., Muñoz L.A. y Viuda-Martos, M. 2015. Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry. Food Science and Technology 64:1057-1062. doi:10.1016/j.lwt.2015.07.026

Goycoolea, F., Remuñan-López, C. y Alonso, M. J., 2009. Nanopartículas a base de polisacáridos: quitosano. Monogr. Real Acad. Nac. Farm. 2009, 103-131.

Jakuboswka E., Gierszewska M., Nowaczyk J. y Olewnik-Kruszkowska, E. 2020. Physicochemical and storage properties of chitosan-based films plasticized with deep eutectic solvent. Food Hydrocolloids 108:106007. doi.org/10.1016/j.foodhyd.2020.106007.

Pandey V.K., Ul Islam R., Shams R. y Hussain A.D. 2022. A comprehensive review on the application of essential oils as bioactive compounds in nanoemulsion based edible coating of fruits and vegetables. Applied Food Research 2(1):100042. doi.org/10.1016/j.afres.2022.100042.

Peniche, C., Argüelles-Monal, W. y Goycoolea, F.M., 2008. Chitin and Chitosan: Major Sources, Properties and Applications, in: Belgacem, M.N., Gandini, A. (Eds.), Monomers, Polymers and Composites from Renewable Resources. Elsevier, Amsterdam, pp. 517-542. doi.org/10.1016/B978-0-08-045316-3.00025-9

Liu, Y, Yuan, Y., Duan, S., Li, G. y Liu, B. 2020. Preparation and characterization of chitosan films with three kinds of molecular weight for food packaging. International Journal of Biological Macromolecules 155:249-259. doi:10.1016/j.ijbiomac.2020.03.217

López-Ambrocio, M.N., Ruiz-Posadas, L.M. y Delgadillo-Martínez. 2016. Actividad antimicrobiana del aceite esencial de tomillo (Thymus vulgaris L). Agroproductividad 9(11):78-82.

Kader, A.A. y Arpaia, M.L. 1999. Avocado, Produce Facts. Postharvest Technology Center. University of California, Davis. http://postharvest.ucdavis.edu/produce facts/fruits/avocado.html.

Kanmani, P. y Rhim, J. 2014. Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydrate Polymers 102:708-716. doi:10.1016/j.carbpol.2013.10.099

Kumar S., Mukherjee A. y Dutta, J. 2020. Chitosan based nanocomposite films and coating: Emerging antimicrobial food packaging alternatives. Trends in Food Science and Technology 97:196-209. doi.org/10.1016/j.tifs.2020.01.002

Madera-Santana, T., Robledo, D. y Freile-Pelegrin, Y. 2011. Physicochemical properties of biodegradable polyvinyl alcohol-agar films from the red algae Hydropuntia corner. Marine Biotechnology 13:793-800. doi 10.1007/s10126-010-9341-8

Martínez-Camacho, A. P., Cortez-Rocha, M. O., Ezquerra-Brauer, J. M., Graciano-Verdugo, A. Z., Rodriguez-Félix, F., Castillo-Ortega, M. M., Yépiz-Gómez, M. S., y Plascencia-Jatomea M. 2010. Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 305-315. doi.org/10.1016/j.carbpol.2010.04.069

Martínez-Robinson, K.G., Martínez-Inzunza, A., Córdova, R.J.R., Rochín-Wong, S., Vasquez-Garcia, S.R. y Fernández-Quiroz, D. 2022. Physicochemical study of chitin and chitosan obtained from California brown shrimp (Farfantepenaeus californiensis) exoskeleton. Biotecnia 24, 28-35. doi.org/10.18633/biotecnia.v24i2.1616

Maftoonazad, N. y Ramaswany, H. 2005. Postharvest shelf-life extension of avocados using methyl cellulose-based coating. LWT:Food Science and Technology 38:617-624. doi:10.1016/j.lwt.2004.08.007

Meir S., Naiman D., Akerman M., Hyman J., Zauberman G. y Fuchs, Y. 1997. Prolonged storage of “Hass” avocado fruit using modified atmosphere packaging. Postharvest Biology and Technology 12(1):51-60. doi.org/10.1016/S0925-5214(97)00038-0

Noshirvani, N., Ghanbarzadeh, B., Gardrat, C., Reza, M., Hashemi, M., Le Coz, C. y Coma, V. 2017. Cinnamon and ginger essential oil to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids 70:36-45. doi.org/10.1016/j.foodhyd.2017.03.015

Ramos-García, M., Bautista-Baños, S. y Barrera-Necha, L. 2010. Compuestos antimicrobianos adicionados en recubrimientos comestibles para uso en productos hortofrutícolas. Rev. Mex. Fitopatol. 28, 44-57. https://www.redalyc.org/articulo.oa?id=612/61214206005.

Rhim J.W., Hong S.I., Park H.M. y Ng, P. 2006. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry 54(16):5814-5822. doi:10.1021/jf060658h

Rinaudo M. 2006. Chitin and chitosan: Properties and applications. Progress in Polymers Science 31:603-632.

Rodriguez-Nuñez J.R., Madera-Santana T., Sanchez-Machada D., Lopez-Cervantes J. y Soto-Valdez, H. 2014. Chitosan/Hydrophilic plasticizer-based films: preparation, physicochemical and antimicrobial properties. Journal of Polymers and Environment 22(1):41-51. doi 10.1007/s10924-013-0621-z

Santos-Lopez G., Arguelles-Monal W., Carvajal-Millan E., Lopez-Franco Y., Recillas-Mota M. y Lizardi-Mendoza J. 2017. Aerogels from chitosan solutions in ionic liquids. Polymers 9,722. doi:10.3390/polym9120722

Sellamuthu, P.S., Mafune, M., Sivakumar, P. y Sounndy, D. 2013. Thyme oil vapour and modified atmosphere packaging reduce anthracnose incidence and maintain fruit quality in avocados. Journal of the Science of Food Agriculture 93:3024-3031. doi 10.1002/jsfa.6135

Vargas, M., Albors, A., Chrrait, A. y Gonzalez, C. 2006. Quality of cold-stores strawberries as affected by chitosan oleic acid edible coating. Postharvest Biology and Technology 41(2):164-171. doi:10.1016/j.postharvbio.2006.03.016

Villa-Rodríguez, J.A., Molina-Corral, F.J., Ayala-Zavala, F. y González-Aguilar, G. 2011. Effect of maturity stage on the content of fatty acid and antioxidant activity of “Hass” avocado. Food Research International 44(5):1231-1237. doi:10.1016/j.foodres.2010.11.012

Descargas

Publicado

2022-12-08

Cómo citar

Madera-Santana, T. J. ., Toledo-López, V. M. ., Martinez-Robison, K. ., Rejón-Moo, V., & Fortiz Hernández, J. (2022). la Evaluación de películas comestibles de quitosano, agar y tomillo para mantener la calidad de frutos de aguacate ‘Hass’ durante su almacenamiento. Biotecnia, 25(1), 116–125. https://doi.org/10.18633/biotecnia.v25i1.1728

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.