Efecto del aceite esencial de Cymbopogon citratus (dc.) Stapf (zacate limón) en la conservación de calidad postcosecha de fresa
DOI:
https://doi.org/10.18633/biotecnia.v27.2460Palabras clave:
citral, conservante, antioxidante, antimicrobiano, bioconservaciónResumen
Se evaluó el efecto del aceite esencial de zacate limón (Cymbopogon citratus) sobre la calidad postcosecha en frutos de fresas durante 21 días de almacenamiento a 4°C. Se emplearon concentraciones de 0.5%, 1.0%, 1.5% y 2.0% de aceite esencial de zacate limón, comparándolas con un control negativo y un control positivo con Microdyn. Los tratamientos con 1.5% y 2.0% de aceite esencial fueron los más efectivos en la conservación de la firmeza, el contenido de humedad y la actividad antioxidante, manteniendo la frescura visual del fruto. En contraste, los tratamientos con concentraciones de 0.5% y 1.0% así como el control negativo, mostraron una rápida pérdida de calidad, con un incremento en los sólidos solubles totales y azúcares reductores. La actividad antioxidante se mantuvo alta en los tratamientos con 1.5% y 2.0%, lo que sugiere que el aceite esencial ralentizó los procesos oxidativos. Los resultados indican que el aceite esencial de C. citratus a concentraciones de 1.5% y 2.0% es comparable con los conservantes comerciales como Microdyn, presentándose como una alternativa natural para prolongar la vida útil de fresas frescas sin recurrir a químicos sintéticos. Este enfoque tiene implicaciones relevantes para la industria de alimentos frescos en la búsqueda de métodos de conservación más sostenibles.
Descargas
Citas
Athayde, A., Oliveira, P., Guerra, I., Conceição, M., Lima, M., Arcanjo, N., Madruga, M., Berger, L., y Souza, E. 2016. A coating composed of chitosan and Cymbopogon citratus (Dc. Ex Nees) essential oil to control Rhizopus soft rot and quality in tomato fruit stored at room temperature. The Journal of Horticultural Science and Biotechnology, 91, 582 - 591. https://doi.org/10.1080/14620316.2016.1193428.
Bhat, R., y Stamminger, R. 2016. Impact of Combination Treatments of Modified Atmosphere Packaging and Refrigeration on the Status of Antioxidants in Highly Perishable Strawberries. Journal of Food Process Engineering, 39, 121-131. https://doi.org/10.1111/JFPE.12205.
De Sousa, D. P., Damasceno, R. O. S., Amorati, R., Elshabrawy, H. A., de Castro, R. D., Bezerra, D. P. y Lima, T. C. 2023. Essential oils: Chemistry and pharmacological activities. Biomolecules, 13(7), 1144. https://doi.org/10.3390/biom13071144
Giampieri, F., Tulipani, S., Alvarez-Suarez, J. M., Quiles, J. L., Mezzetti, B. y Battino, M. 2012. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28(1), 9-19. doi:10.1016/j.nut.2011.08.009.
Hoseini, S., Amini, J., Rafei, J. y Khorshidi, J. 2019. Inhibitory effect of some plant essential oils against strawberry anthracnose caused by Colletotrichum nymphaeae under in vitro and in vivo conditions. European Journal of Plant Pathology, 155, 1287 - 1302. https://doi.org/10.1007/s10658-019-01856-2.
Kargwal, R., Garg, M. K., Singh, V. K., Garg, R. y Kumar, N. 2020. Principles of modified atmosphere packaging for shelf life extension of fruits and vegetables: An overview of storage conditions. IJCS, 8(3), 2245-2252. https://doi.org/10.22271/chemi.2020.v8.i3af.9545
Krishnaveni, K., Sabitha, M., Murugan, M., Kandeepan, C., Ramya, S., Loganathan, T. y Jayakumararaj, R. 2022. vNN model cross validation towards Accuracy, Sensitivity, Specificity and kappa performance measures of β-caryophyllene using a restricted-unrestricted applicability domain on Artificial Intelligence & Machine Learning approach based in-silico prediction. Journal of Drug Delivery and Therapeutics. https://doi.org/10.22270/jddt.v12i1-s.5222.
Liu, S., Shao, X., Wei, Y., Li, Y., Xu, F. y Wang, H. 2016. Solidago canadensis L. Essential Oil Vapor Effectively Inhibits Botrytis cinerea Growth and Preserves Postharvest Quality of Strawberry as a Food Model System. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01179.
Madi, Y., Choucry, M., Meselhy, M. y El-kashoury, E. 2020. Essential oil of Cymbopogon citratus cultivated in Egypt: seasonal variation in chemical composition and anticholinesterase activity. Natural Product Research, 35, 4063 - 4067. https://doi.org/10.1080/14786419.2020.1713125.
Moreno, J., Chiralt, A., Escriche, I. y Serra, J. 2000. Effect of blanching/osmotic dehydration combined methods on quality and stability of minimally processed strawberries. Food Research International, 33, 609-616. https://doi.org/10.1016/S0963-9969(00)00097-1.
Okpo, S. O. y Edeh, I. 2023. A comprehensive review on lemongrass (Cymbopogon Citratus) oil extraction and its applications. EPRA International Journal of Researc h and Development (IJRD), 8(4), 258-273. https://doi.org/10.36713/epra12959
Oliveira, P., Oliveira, K., Vieira, W., Câmara, M. y Souza, E. 2018. Control of anthracnose caused by Colletotrichum species in guava, mango and papaya using synergistic combinations of chitosan and Cymbopogon citratus (D.C. ex Nees) Stapf. essential oil. International journal of food microbiology, 266, 87-94. https://doi.org/10.1016/j.ijfoodmicro.2017.11.018.
Sahal, G., Woerdenbag, H., Hinrichs, W., Visser, A., Tepper, P., Quax, W., Mei, H. y Bilkay, I. 2020. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. Journal of ethnopharmacology, 112188. https://doi.org/10.1016/j.jep.2019.112188.
Salaria, D., Rolta, R., Sharma, N., Patel, C., Ghosh, A., Dev, K., Sourirajan, A. y Kumar, P. 2021. In vitro and in silico antioxidant and anti-inflammatory potential of essential oil of Cymbopogon citratus (DC.) Stapf. of North-Western Himalaya. Journal of Biomolecular Structure and Dynamics, 40, 14131 - 14145. https://doi.org/10.1080/07391102.2021.2001371.
Santín, M., Santos, A., Nakamura, C., Filho, B., Ferreira, I. y Ueda-Nakamura, T. 2009. In vitro activity of the essential oil of Cymbopogon citratus and its major component (citral) on Leishmania amazonensis. Parasitology Research, 105, 1489-1496. https://doi.org/10.1007/s00436-009-1578-7.
Sharma, R. R., Singh, D. y Singh, R. 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205-221. https://doi.org/10.1016/j.biocontrol.2009.05.001
Shehata, S. A., Abdeldaym, E. A., Ali, M. R., Mohamed, R. M., Bob, R. I., y Abdelgawad, K. F. 2020. Effect of some citrus essential oils on post-harvest shelf life and physicochemical quality of strawberries during cold storage. Agronomy, 10(10), 1466. https://doi.org/10.3390/agronomy10101466
Sonker, N., Pandey, A., Singh, P., y Tripathi, N. 2014. Assessment of Cymbopogon citratus (DC.) stapf essential oil as herbal preservatives based on antifungal, antiaflatoxin, and antiochratoxin activities and in vivo efficacy during storage. Journal of food science, 79 4, M628-34. https://doi.org/10.1111/1750-3841.12390.
Toazza, C., Marques, C., Amaral, W. y Masson, M. 2021. Comparative study of Elyonurus muticus and Cymbopogon essential oils: potential as food preservative and surface coating of strawberries. Journal of Essential Oil Research, 33, 359 - 368. https://doi.org/10.1080/10412905.2021.1895336.
Trejo, V., Trejo, M. A., Pascual, S. y Lira, A. A. 2015. Extracción de aceite esencial de eucalipto y su aplicación en la conservación de frambuesas. Revista Iberoamericana de Tecnología Postcosecha, 16(2), 228-233.
Vicente, A., Costa, M., Martínez, G., Chaves, A. y Civello, P. 2005. Effect of heat treatments on cell wall degradation and softening in strawberry fruit. Postharvest Biology and Technology, 38, 213-222. https://doi.org/10.1016/J.POSTHARVBIO.2005.06.005.
Vyshali, P., Saraswathi, K. y Mallavarapu, G. 2015. Chemical Composition of the Essential Oils of Cymbopogon citratus (DC.) Stapf Grown in Three Locations in South India. Journal of Essential Oil Bearing Plants, 18, 230 - 235. https://doi.org/10.1080/0972060X.2014.935075.
Wang, W., Hu, W., Ding, T., Ye, X. y Liu, D. 2018. Shelf-life prediction of strawberry at different temperatures during storage using kinetic analysis and model development. Journal of Food Process and Preservation, 42(8), e13693. https://doi.org/10.1111/jfpp.13693
Woodward, J. 1972. Physical and chemical changes in developing strawberry fruits. Journal of the science of food and agriculture, 23 4, 465-73. https://doi.org/10.1002/JSFA.2740230406.
Yan, J., Wu, H., Chen, K., Feng, J. y Zhang, Y. 2021. Antifungal Activities and Mode of Action of Cymbopogon citratus, Thymus vulgraris, and Origanum heracleoticum Essential Oil Vapors against Botrytis cinerea and Their Potential Application to Control Postharvest Strawberry Gray Mold. Foods, 10. https://doi.org/10.3390/foods10102451.
Zaman, F., Jaffel, K. y Abdelmageed, A. 2022. The Effects of Post-Harvest Drying Period on the Yield and Chemical Composition of leaf Essential Oil from Cymbopogon citratus (DC.) Stapf. Journal of Essential Oil Bearing Plants, 25, 571 - 580. https://doi.org/10.1080/0972060X.2022.2084349.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)