Validación externa de ecuaciones de composición corporal por análisis de impedancia bioeléctrica y la absorciometría dual de rayos X entre corredores recreativos mexicanos

Autores/as

  • Manuel A Vázquez-Bautista Centro de Investigación en Alimentación y Desarrollo, A.C. https://orcid.org/0000-0002-6600-136X
  • Alma E Robles-Sardin Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304, Her-mosillo, México. https://orcid.org/0000-0003-2044-7793
  • Mónica Reséndiz-Sandoval Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304, Her-mosillo, México. https://orcid.org/0000-0002-4396-338X
  • María Jossé Navarro-Ibarra Department of Nutrition, Faculty of Medicine and Nutrition, Universidad Autónoma de Baja California, 21000, Mexicali, México https://orcid.org/0000-0001-8051-6928
  • Jesús Hernández López Coordinación de Nutrición https://orcid.org/0000-0002-5131-3600
  • Graciela Caire-Juvera Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304, Her-mosillo, México. https://orcid.org/0000-0003-1562-795X

DOI:

https://doi.org/10.18633/biotecnia.v27.2512

Palabras clave:

masa libre de grasa, atleta, grasa corporal, deporte

Resumen

Los profesionales del deporte priorizan la composición corporal (CC) de los atletas por su vínculo con el rendimiento. El análisis de impedancia bioeléctrica (BIA) estima la CC mediante ecuaciones predictivas, cuya validación es necesaria para determinar su utilidad. El objetivo fue validar externamente cuatro ecuaciones de BIA para estimar la CC en corredores recreativos mexicanos, utilizando la absorciometría dual de rayos X (DXA) como método de referencia. En este estudio de validación externa con diseño transversal, 30 corredores recreativos mexicanos (edad 38.0 ± 10.7 años) fueron evaluados mediante DXA y cuatro ecuaciones de BIA. Se aplicó una prueba t pareada para comparar diferencias entre métodos. Se emplearon pruebas de equivalencia, regresión lineal simple y análisis de Bland–Altman para evaluar la concordancia, con un nivel de significancia de p < 0.05. No se encontraron diferencias significativas entre DXA y las ecuaciones de Macías et al. (2007) y Lukaski y Bolonchuk (1987), ambas mostraron sesgo no significativo y equivalencia dentro del 5%. Lukaski y Bolonchuk (1987) demostraron ser las más precisas para esta muestra. Estas ecuaciones podrían ser útiles para estimar la CC en corredores recreativos; sin embargo, se recomienda cautela en su uso para seguimiento individual.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Atkinson, G. and Nevill, A.M. 1998. Statistical Methods For Assessing Measurement Error (Reliabil-ity.in Variables Relevant to Sports Medicine. Sports Medicine, 26(4): 217–238. https://doi.org/10.2165/00007256-199826040-00002.

Bland, J.M. and Altman, D.G. 1986. Statistical methods for assesing agreement between two methods of clinical measurement. Lancet, 1(8476): 307–310.

Bossingham, M.J., Carnell, N.S. and Campbell, W.W. 2005. Water balance, hydration status, and fat-free mass hydration in younger and older adults. Am J Clin Nutr, 81(6): 1342–1350. https://doi.org/10.1093/ajcn/81.6.1342.

Campa, F. et al. 2019. Anthropometry, Physical and Movement Features, and Repeated-sprint Ability in Soccer Players. International Journal of Sports Medicine, 40(2): 100–109. https://doi.org/10.1055/a-0781-2473.

Campa, F. et al. 2021. Assessment of body composition in athletes: A narrative review of available methods with special reference to quantitative and qualitative bioimpedance analysis. Nutrients, 13(5). https://doi.org/10.3390/nu13051620.

Campa, F. et al. 2022. Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. European Journal of Applied Physiology, 122(3): 561–589. https://doi.org/10.1007/s00421-021-04879-y.

Carbuhn, A.F. et al. 2022. Anthropometric Factors Associated With Bone Stress Injuries in Collegiate Distance Runners: New Risk Metrics and Screening Tools?. Orthopaedic Journal of Sports Medicine, 10(2): 1–10. https://doi.org/10.1177/23259671211070308.

Cholewa, J.M. et al. 2019. Anthropometrical Determinants of deadlift Variant Performance. Journal of Sports Science and Medicine, 18(August): 448–453.

Coratella, G. et al. 2021. Generalized bioelectric impedance-based equations underestimate body fluids in athletes. Scandinavian Journal of Medicine and Science in Sports, 31(11): 2123–2132. https://doi.org/10.1111/sms.14033.

Dixon, P.M. et al. 2018. A Primer on the Use of Equivalence Testing for Evaluating Measurement Agreement. Medicine & Science in Sports & Exercise, 50(4): 837–845. https://doi.org/10.1249/MSS.0000000000001481.

Ferland, P.-M., Laurier, A. and Comtois, A.S. 2020. Relationships Between Anthropometry and Maximal Strength in Male Classic Powerlifters.. International journal of exercise science, 13(4): 1512–1531.

Gallagher, D. et al. 2000. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. The American Journal of Clinical Nutrition, 72(3): 694–701. https://doi.org/10.1093/ajcn/72.3.694.

Gavan, J.A. 1950. The consistency of anthropometric measurements. American Journal of Physical Anthropology, 8(4): 417–426. https://doi.org/10.1002/ajpa.1330080414.

Giavarina, D. 2015. Understanding Bland Altman analysis. Biochemia Medica, 25(2): 141–151. https://doi.org/10.11613/BM.2015.015.

Houtkooper, L.B. et al. 2001. Body composition profiles of elite American heptathletes. International Journal of Sport Nutrition, 11(2): 162–173. https://doi.org/10.1123/ijsnem.11.2.162.

Knechtle, B. and Tanda, G. 2013. Marathon performance in relation to body fat percentage and train-ing indices in recreational male runners. Open Access Journal of Sports Medicine, p. 141. https://doi.org/10.2147/oajsm.s44945.

Kyle, U.G. et al. 2004. Bioelectrical impedance analysis - Part I: Review of principles and methods. Clin Nutr, 23(5): 1226–1243. https://doi.org/10.1016/j.clnu.2004.06.004.

Lohman, T.G. and Chen, Z. 2005. Dual-Energy X-Ray Absorptiometry. in Human Body Composition. Second. Champaing, IL: Human Kinetics: 63–78.

Lukaski, H.C. et al. 1986. Theory and Validation of the Tetrapolar Bioelectrical Impedance Method to Assess Human Body Composition. Journal of Applied Physiology, 60(4): 1327–1332. https://doi.org/10.1152/jappl.1986.60.4.1327.

Lukaski, H.C. et al. 1990. Body composition assessment of athletes using bioelectrical impedance measurements. J Sports Med Phys Fitness, 30(4): 434–440.

Macias, N. et al. 2007. Body fat measurement by bioelectrical impedance and air displacement ple-thysmography: A cross-validation study to design bioelectrical impedance equations in Mexican adults. Nu-trition Journal, 6. https://doi.org/10.1186/1475-2891-6-18.

Matias, C.N. et al. 2016. Estimation of total body water and extracellular water with bioimpedance in athletes: A need for athlete-specific prediction models. Clin Nutr, 35(2): 468–474. https://doi.org/10.1016/j.clnu.2015.03.013.

Matias, C.N. et al. 2020. Fat-free Mass Bioelectrical Impedance Analysis Predictive Equation for Athletes using a 4-Compartment Model. International Journal of Sports Medicine, 42(1): 27–32. https://doi.org/10.1055/a-1179-6236.

Mooses, M. et al. 2013. Running economy and body composition between competitive and recrea-tional level distance runners. Acta Physiologica Hungarica, 100(3): 340–346. https://doi.org/10.1556/APhysiol.100.2013.3.10.

Nikolaidis, P.T., Rosemann, T. and Knechtle, B. 2020. Skinfold thickness distribution in recreational marathon runners. International Journal of Environmental Research and Public Health, 17(9). https://doi.org/10.3390/ijerph17082978.

Piasecki, J. et al. 2018. The strength of weight-bearing bones is similar in amenorrheic and eumenor-rheic elite long-distance runners. Scandinavian Journal of Medicine and Science in Sports, 28(5): 1559–1568.

Sagayama, H. et al. 2020. Evaluation of fat-free mass hydration in athletes and non-athletes. European Journal of Applied Physiology, 120(5): 1179–1188. https://doi.org/10.1007/s00421-020-04356-y.

Santos, D.A. et al. 2010. Accuracy of DXA in estimating body composition changes in elite athletes using a four compartment model as the reference method. Nutrition and Metabolism, 7. https://doi.org/10.1186/1743-7075-7-22.

Suchomel, T.J., Nimphius, S. and Stone, M.H. 2016. The Importance of Muscular Strength in Athlet-ic Performance. Sports Med, 46(10): 1419–1449. https://doi.org/10.1007/s40279-016-0486-0.

Ulijaszek, S.J. and Kerr, D.A. 1999. Anthropometric measurement error and the assessment of nutri-tional status. Brit J Nutr, 82(3): 165–177. https://doi.org/10.1017/S0007114599001348.

Ward, L.C. and Brantlov, S. 2023. Bioimpedance basics and phase angle fundamentals. Reviews in Endocrine and Metabolic Disorders, 24(3): 381–391. https://doi.org/10.1007/s11154-022-09780-3.

Resumen gráfico

Publicado

2025-10-15

Cómo citar

Vázquez-Bautista, M. A., Robles-Sardin, A. E., Reséndiz-Sandoval, M., Navarro-Ibarra, M. J., Hernández López, J., & Caire-Juvera, G. (2025). Validación externa de ecuaciones de composición corporal por análisis de impedancia bioeléctrica y la absorciometría dual de rayos X entre corredores recreativos mexicanos. Biotecnia, 27, e2512. https://doi.org/10.18633/biotecnia.v27.2512

Número

Sección

Artículos originales

Métrica