FIBROLYTIC ACTIVITY OF PODAXIS PISTILLARIS FUNGUS IN SUBMERGED CULTURE

Agustín Rascón Chu, Carmen Armida Contreras Vergara, Ciria Guadalupe Figueroa Soto, Tania Elisa González Soto, Martín Esqueda Valle, José Alfonso Sánchez Villegas

Resumen


Podaxis pistillaris is a fungus commonly found in most desert areas worldwide. The oval shaped peridium, the rigid woody stipe, plus a 10-15 μm spore size stand out among its morphological features. Even though this fungus is used for human consumption and for several traditional remedies, a lack of knowledge regarding its fibrolytic enzymatic system still prevails. This fungus was collected from the central region of the Sonoran desert (29° 07.23´ 97” LN and 110° 53.58´ 02” LW, 238 masl). In order to study its enzymatic system on common fibers, P. pistillaris was grown in a specific submerged culture in order to determine total cellulases, xylanases and laccases. The maximum cellulolytic (501.7 U·mg-1), as well as xylanolytic (157.8 U·mg-1) activities, were detected after 18 cultivation days, whereas the highest laccase specific activity (179.6 U·mg-1) was registered after 15 days at 40° C. The thermostability of total cellulases, xylanases and laccases was found within temperatures ranging from 40 to 60° C. The present study represents the first report of P. pistillaris fibrolytic activity in submerged culture.


Palabras clave


cellulases; xylanases; laccases; thermostable enzyme; enzymatic activity

Texto completo:

PDF (English)

Referencias


Altschul, S.F., Gish, W., Miller, W., Myers, E.W. y Lipman, D.J. 1990.

Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.

Atreya, M.E., Strobel, K.L. y Clark, D.S. 2016. Alleviating product inhibition in cellulase enzyme cel7A. Biotechnology and Bioengineering. 113: 330-338.

Blumer-Schuette, S.E., Kataeva, I., Westpheling, J., Adams W.W. y Kelly, R.M. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Current Opinion in Biotechnology. 19: 210-217.

Bradford, M.M. 1976. A rapid and sensitive method for the quanititation of microgram quiantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-254.

Chander, E., Gupta, R. y Singh, A. 2011. Microbial cellulases and their industrial applications. Enzyme Research. 2011: 1-10.

Dashtban, M., Schraft, H., Syed, T.A. y Qin, W. 2010. Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology. 1: 36-50.

Dubois, M., Gillesk, A., Hamiltonj, K., Rebersp, A. y Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28: 350-356.

Elisashvili, V., Kachlishvili, E. y Penninckx, M. 2008. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology & Biotechnology. 35: 1531–1538.

Esqueda, M., Gutiérrez, A., Coronado, M.L., Lizárraga, M., Raymundo, T. y Valenzuela, R. 2012. Distribución de algunos hongos gasteroides (Agaricomycetes) en la planicie central del Desierto Sonorense. Revista Mexicana de Micología 36:1-8.

Feleke, H.T. y Doshi, A. 2017. Antimicrobial activity and bioctive compounds of indian wild mushrooms. Indian Journal of Natural Products and Resources. 8: 254-262.

García-Oduardo, N., Bermúdez-Savón, R.C., Tellez-Suarez, I., Chávez-Toledano, M. y Perraud-Gaime, I. 2017. Enzimas lacasa en inóculos de Pleurous spp. Tecnología Química. 37:1-6.

Green, M.R. y Sambrook, J. 2012. Molecular Cloning: A Laboratory Manual, 4th ed. Cold Spring Harbor, NY. 1: 32-34.

Herrera, T. y Ulloa, M. 1998. El reino de los hongos. Micología básica y aplicada. 2a Ed. Universidad Nacional Autónoma de México-Fondo de Cultura Económica, México, D.F. 552 pp.

Ho, H.L. y Iylia, Z. 2015. Optimised production of xylanase by Aspergillus brasiliensis under submerged fermentation (SmF) and its purification using a two-step column chromatography. Journal of Advances in Biology & Biotechnology. 4: 1-22.

Hollmann, F., Gumulya, Y., Tolle, Ch., Liese, A. y Thum, O. 2008. Evaluaation of the laccase from Myceliophthora thermophila as industrial biocatalist for polymerization reactions. Macromolecules. 41: 8520-8524.

Inalbon, M.C., Mocchiutti, P., Zanuttini, M.A., Balatti, P., Rajchenberge, M. y Saparrat, C.N. 2015. Applying ligninolytic fungi on Eucalyptus grandis wood for pulping pretreatment or fractionation. Procedia Materials Science. 8: 1099 –1107.

Johnson, J. y Vilgalys, R. 1999. Phylogenetic relationships within Lepiota sensu lato inferred from nuclear and mitochondrial rDNA sequences. Mycologia. 91: 443-458.

Kanwar, S.S. y Devi, S. 2012. Thermostable xylanases from microbial origin: Recent insights and biotechnological potential. The International Journal of Biotechnology. 1:1-20.

Li, X., She, Y., Sun, B., Song, H., Zhu, Y., Lv, Y. y Song, H. 2010. Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp. Biochemical Engineering Journal. 52: 71-78.

Manole, A., Herea, D., Chiriac, H. y Melnig, V. 2008. Laccase activity determination. Scientific Annals of Alexandru Ioan Cuza din Iaşi University, Tom IV, Biomaterials in Biophysics Medical Physics and Ecology. 1: 17–24.

Márquez, A.T., Mendoza, G.D., González, S.S., Buntinx, S.E. y Loera, O. 2007. Actividad fibrolítica de enzimas producidas por Trametes ssp. EUM1, Pleurotus ostreatus IE8 y Aspergillus niger AD96.4 en fermentación sólida. Interciencia. 32: 780-785.

Mate, D.M. y Alcalde, M. 2017. Laccase: a multi-purpose biocatalist at the Forefront of biotechnology. Microbial Biotechnology. 10: 1457-1467.

Mazumder, S., Bose, S., Bandopadhyay, A., Alam, S. y Mukherjee, M. 2008. Study of laccase production by Pleurotus ostreatus in a 5 l bioreactor and application of the enzyme to determine the antioxidant concentration of human plasma. Letters in Applied Microbiology. 47: 355-360.

Mtibaà, R., de Eugenio, L., Ghariani, B., Louati, I., Belbahri, L., Nasri, M. y Mechichi, T. 2017. A halotolerant laccase from Chaetomium strain isolated from desert soil and its ability for dye decolourization. Biotech. 7:329

Murad, H.A. y Azzaz, H.H. 2010. Cellulase and dairy animal feeding. Biotechnology 9: 238-256.

Płaza, G.A., Upchurch, R., Brigmon, R. L., Whitman, W. B. y Ulfig, K. 2004. Rapid DNA extraction for screening soil filamentous fungi using PCR amplification. Polish Journal of Environmental Studies. 13: 315-318.

Vásquez-Dávila, M.A. 2017. Current and potential use of the desert fungus Podaxis pistillaris (L.) Fr. (Agaricaceae). Journal of Bacteriology &Mycology: Open Access 5(3): 00137.

DOI:10.15406/jbmoa.2017.05.00137.

Villalobos, S., Mengual, M. y Henao-Mejía, L.G. 2017. Uso de los hongos, Podaxis pistillaris, Inonotus rickii y Phellorinia herculeana (basidiomycetes), por la etnia Wayuu en la alta guajira colombiana. Revista Etnobiología. 15: 64-73.

Zambare, V., Zambare, A., Muthukumarappan, K. y Christopher, L.P. 2011. Biochemical characterization of thermophilic lignocellulose degrading enzymes and their potential for biomass bioprocessing. International Journal of Energy and Environment. 2: 99-112.

Zhu, Y., Zhang, H., Cao, M., Wei, Z., Huang, F. y Gao, P. 2011. Production of a thermostable metal-tolerant laccase from Trametes versicolor and its application in dye decolorization. Biotechnology and Bioprocess Engineering. 16: 1027-1035.




DOI: http://dx.doi.org/10.18633/biotecnia.v21i1.874

Enlaces refback

  • No hay ningún enlace refback.