Calidad proteica en las fracciones de molienda de rodillos de trigo (T. aestivum) a nivel comercial

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v22i3.1201

Palabras clave:

Fracciones de molienda, proteinas, molienda de rodillos, gliadinas omega

Resumen

Las proteinas en la harina de trigo juegan un papel muy importante en la funcionalidad y calidad de sus productos, por lo que es importante conocer como se segregan en las diferentes corrientes de la molienda de rodillos. Se analizaron 23  corrientes de harinas de trigo (T. aestivum)  de un sistema de molienda comercial. Se utilizó SDS-PAGE para estudiar a las subunidades de gluteninas y las subclases de gliadinas, encontrándose diferencias en la composición de las gliadinas omega. Se cuantificaron la proteina total (PT) y proteina polimérica insoluble (PPI), encontrandose variación de 11.56 a 18.41 % (bs) y 5.32 a 10.54 % (bs).  Se usó (SE-HPLC) para estudiar las fracciones: proteina polimérica soluble (PPS), gliadinas, albuminas y globulinas, observándose diferencias en  el patrón de separación y en las cantidad presente en las harinas. Además, se analizó la funcionalidad de las harinas con la prueba de sedimentación, obteniendo valores de  4.9 a 41 ml. Las diferencias en cantidades encontradas son en parte información confirmatoria; sin embargo, diferencias en composición, especialmente la relacionada con omega gliadinas son contribución del presente trabajo.

 

Biografía del autor/a

Patricia Isabel Torres Chavez, Universidad de Sonora

Profesora del Posgrado en Ciencia y Tecnología de Alimentos,

Universidad de Sonora

Citas

AACC. 2020. Approved Methods of Analysis, 11th ed. Metods: 08-01.01; 44-40; 56-60.01. Cereals and Grains Association, St. Paul, MN, USA.

Bean, S. R., Lyne, R. K., Tilley, K. A., Chung, O. K., & Lookhart, G. L. 1998. A rapid method for quantitation of insoluble polymeric proteins in flour. Cereal Chemistry 75: 374-379.

Brutsch, L., Huggler, I., Kuster, S., & Windhab, E. J. 2017. Industrial roller milling process characterisation for targeted bread quality optimization. Food and Bioprocess Technology. 10: 710-719.

Campbell, G. M., Fang, C., & Muhamad, I. I. 2007. On predicting roller milling performance VI: Effect of kernel hardness and shape on the particle size distribution from first break milling of wheat. Food and Bioproducts Processing. 85: 7-23.

Dube, R., Indrani, D., Leelavathi, K., & Sidhu, J. S. 1987. Flour mil streams. I. Physico-chemical and rheological characteristics. Indian Miller. 18: 17-19.

Every, D., Simmons, L., Al-Hakkak, J., Hawkins, S., Ross, M., 2002. Amylase, falling number, polysaccharide, protein and ash relationships in wheat millstreams. Euphytica 126: 35-142.

Gupta, R.B., Khan, K. & Macritchie, F. 1993. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. Journal of Cereal Science 18: 23-41.

Kent, N. L. 1966. Technology of Cereals, with Special Reference to Wheat. 2a ed. Oxford, Pergamon Press Limited label, New York, NY, USA.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

Liu, Y., Ohm, J. B., Hareland, G., Wiersma, J., & Kaiser, D. 2011. Sulfur, protein size distribution, and free amino acids in flour mill streams and their relationship to dough rheology and breadmaking traits. Cereal Chemistry. 88:109-116.

Nelson, P. N. & McDonald, C. E. 1977. Properties of wheat flour protein in flour from selected mill streams. Cereal Chemistry. 54: 1182-1191.

Okrajkova, A., Prieto-Linde, M., Muchova, Z., & Johansson, E. 2007. Protein concentration and composition in wheat flour mill streams. Cereal Research Communications. 35: 119-128.

Payne, P. I., Law, C. N., & Mudd, E. E. 1980. Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theoretical and Applied Genetics, 58:113-120.

Pomeranz Y. 1988. Wheat Chemistry and Technology. 3rd ed. American Association of Cereal Chemists, St. Paul, Minnesota, USA.

Pojic, M. M., Spasojević, N. B., & Atlas, M. Đ. 2014. Chemometric approach to characterization of flour mill streams: chemical and rheological properties. Food and Bioprocess Technology. 7: 1298-1309.

Sakhare, S. D., Inamdar, A. A., Indrani, D., Kiran, M. M., & Rao, G. V. 2015. Physicochemical and microstructure analysis of flour mill streams and milled products. Journal of Food Science and Technology. 52: 407-414.

Shewry, P. R. 2009. Wheat. Journal of experimental botany. 60(6), 1537-1553.

Suresh, A. & Neethirajan, S. 2015. Real-time 3D visualization and quantitative analysis of internal structure of wheat kernels. Journal of Cereal Science. 63: 81-87.

Sutton K.H. & Simmons L.D. 2006. Molecular level protein composition of flour mill streams from a pilot-scale flour mil and its relationship to product quality. Cereal Chemistry. 83: 52-56.

Tosi, P., Gritsch, C. S., He, J., & Shewry, P. R. 2011. Distribution of gluten proteins in bread wheat (Triticum aestivum) grain. Annals of Botany. 108: 23-35.

Tosi, P., He, J., Lovegrove, A., Gonzales-Thuillier, I., Penson, S. & Shewry, P. 2018. Gradients in compositions in the starchy endosperm of wheat have implications for milling and processing, Trends In Food Science & Technology. 82:134-139.

Wang, Y. G., Khan, K., Hareland, G., & Nygard, G. 2007. Distribution of protein composition in bread wheat flour mill streams and relationship to breadmaking quality. Cereal Chemistry. 84: 271-275.

Descargas

Publicado

2020-09-21

Número

Sección

Artículos