Rendimiento de Litopenaeus vannamei a diferentes niveles de ingesta diaria de proteína y proporciones carbohidrato/proteína en alimentos formulados con baja inclusión de harina de pescado

Autores/as

  • Francisco Javier Magallón Barajas Centro de Investigaciones Biológicas del Noroeste, S.C. https://orcid.org/0000-0001-6234-7251
  • Juan Carlos Rubalcava Márquez Centro de Investigaciones Biológicas del Noroeste, S.C.
  • Eliza Martínez Antonio Centro de Investigaciones Biológicas del Noroeste, S.C. https://orcid.org/0000-0002-9241-7123
  • Ernesto Goytortúa Bores Centro de Investigaciones Biológicas del Noroeste, S.C. https://orcid.org/0000-0003-4991-9993
  • Píndaro Álvarez Ruíz Centro Interdisciplinario de Investigación en Desarrollo Regional, Campus Guasave, Instituto Politécnico Nacional https://orcid.org/0000-0001-9042-463X
  • Humberto Mejía Ruíz Centro de Investigaciones Biológicas del Noroeste, S.C.
  • Ramón Casillas Hernández Instituto Tecnológico de Sonora https://orcid.org/0000-0003-1977-5298

DOI:

https://doi.org/10.18633/biotecnia.v23i3.1412

Palabras clave:

Ingesta diaria de proteína, retención de nitrógeno, desempeño de L. vannamei, proporción carbohidrato: proteína.

Resumen

RESUMEN

El aumento de la producción acuícola requiere optimización del alimento para reducir costos e impactos al ambiente. El propósito de este estudio fue determinar las funciones matemáticas de ingesta diaria de proteína (IDP), con objeto de utilizarlas para evaluar dietas con inclusión baja de harina de pescado y mejor eficiencia proteica y retención de nitrógeno en juveniles de L. vannamei. Primer experimento; variación de IDP (80, 100, 120 y 140 %) a una proporción de carbohidrato:proteína constante. Segundo experimento; se evaluaron dietas con cinco niveles de CHO:P (2.1, 1.5, 1.1, 0.8 y 0.6) con IDP constante. DPI = 43.174 BW-0.684 fue la función matemática que representó de mejor manera las prácticas de alimentación acuícolas. La variación de los niveles de IDP y carbohidrato:proteína (CHO:P) tuvieron un efecto significativo sobre todos los parámetros evaluados con excepción de la supervivencia. Los parámetros de crecimiento y el factor de conversión alimenticia se incrementaron con la IDP y con la proporción CHO:P, la eficiencia proteica y la retención de nitrógeno disminuyeron con el IDP al mismo nivel de CHO:P y se incrementaron con la proporción CHO:P cuando se aplicó el mismo nivel de IDP en alimentos con inclusión baja de harina de pescado.

Biografía del autor/a

Juan Carlos Rubalcava Márquez, Centro de Investigaciones Biológicas del Noroeste, S.C.

Alumno de doctorado en Uso Manejo y Preservacion de los Recursos Naturales del CIBNOR.

Eliza Martínez Antonio, Centro de Investigaciones Biológicas del Noroeste, S.C.

Doctora en Ciencias Graduada en el Programa Uso, Manejo y Preservación de los Recursos Naturales del Centro de Investigaciones Biológicas del Noroeste, S.C.

Ernesto Goytortúa Bores, Centro de Investigaciones Biológicas del Noroeste, S.C.

SDoctor en Ciencias

Responsable técnico y de investigación ebn el laboratorio de nutrición acuícola

Programa de Acuicultura

Centro de Ciencias Biológicas del Noroeste

Experiencia en Investigación en el campo de la nutrición acuícola

Experiencia en formulación de alimentos para peces y crustáceos

Experiencia en elaboración de alimentos balanceados

Píndaro Álvarez Ruíz, Centro Interdisciplinario de Investigación en Desarrollo Regional, Campus Guasave, Instituto Politécnico Nacional

Doctor en Ciencias

Profesor Investigador en ciencias acuícolas

Areas de Investigación y Experiencia

Enfermedades de peces y crustáceos

Inmunología de crustaceos

Desarrollo de herramientas moleculares orientadas a enfermedades de peces y crustáceos

Disgnóstico molecular e identificación de patógenos acuáticos (virus, bacterias y parásitos)

 

Humberto Mejía Ruíz, Centro de Investigaciones Biológicas del Noroeste, S.C.

Doctor en ciencias

Profesor e investigador en ciencias acuícolas

Areas de Investigación y experiencia

Biotecnología

Herramientas moleculares para enfermedades de crustaceos

Immunonutrition

Ramón Casillas Hernández, Instituto Tecnológico de Sonora

Doctor en Ciencias

Profesor Investigador en Ciencias Acuícolas

Areas de Investigación y experiencia

Acuicultura

Immunonutrición

Enfermedades de crustaceos

Manejo de sistemas de alimentación

 

Citas

REFERENCES
Akiyama, H., Nakamura, N., Nagasaka, S., Sakamaki, S. & Onozawa, Y. 1992. Hypercalcaemia due to all- trans retinoic acid. Lancet. 339: 308–309.
Brito, R., Rosas, C., Chimal, M.E. & Gaxiola, G. 2001. Effect of different diets on growth and digestive enzyme activity in Litopenaeus vannamei (Bone, 1931) early post-larvae. Aquaculture Research. 32: 257-266.
Clifford, H.C. 1992. Marine shrimp pond management: Review. Pages 110-137 in J. Wyban, editors. Proceeding of the special session on shrimp farming. The World Aquaculture Society. Baton Rouge, LA, USA.
FAO. 2020. The state of world fisheries and aquaculture. Sustainability in action.
Gaxiola, G., Guzon, G., Garcia, T., Tabeada, T. & Brito, R. 2005. A factorial effects of salinity, dietary carbohydrate and molt cycle on digestive carbohydrases and hexokinases in Litopenaeus vannamei (Boone, 1931). Comparative Biochemistry and Physiology. 140: 29-39.
González-Félix, M.L., Lawrence, A.L., Gatlin, D.M. & Pérez-Velázquez, M. 2002. Growth, survival and fatty acid composition of juvenile Litopenaeus vannamei fed different oils in the presence and absence of phospholipids. Aquaculture. 205: 325–343.
Guo, R., Liu, Y.J., Tian, L.X. & Huag, J.W. 2006. Effect of dietary cornstarch levels on growth performance, digestibility and microscopic structure in the white shrimp Litopenaeus vannamei reared in brackish water. Aquaculture Nutrition. 12: 83-88
Güroy, D., Sahin, I., Güroy, B., Altin, A. & Merrifield, D.L. 2012. Effect of dietary protein level on growth performance and nitrogen excretion of the yellow tail cichlid, Pseudotropheus acei. Israeli Journal of Aquaculture, 64:1.
He, H., Lawrence, A.L. & Liu, R. 1992. Evaluation of dietary essentiality of fat- soluble vitamins, A, D, E and K for penaeid shrimp (Penaeus vannamei). Aquaculture. 103: 177–185.
Hu, Y., Tan, B., Mai, K., Ai, Q., Zheng, S., & Cheng, K. 2008. Growth and body composition of juvenile whiteleg shrimp, Litopenaeus vannamei, fed different ratios of dietary protein to energy. Aquaculture Nutrition. 14: 499-506.
Jang, I.K., Yun, H., Katya, K. & Bai, S.C. 2014. Evaluation of optimum protein level for juvenile whiteleg shrimp (Litopenaeus vannamei). Journal of Crustacean Biology. 24(5): 552-558.
Kureshy, N. & Davis, D.A. 2002. Protein requirement for maintenance and maximum weight gain for the pacific white shrimp, Litopenaeus vannamei. Aquaculture. 204: 125-143.
Limsuwan, C. & Junratchakoo, P. 2004. Shrimp Culture Industry of Thailand. Magic Publishing, Bangkok.
Liu, D. H., He, J.G., Liu, Y.J., Zheng, S.X. & Tian, L.X. 2005. Effects of dietary protein levels on growth performance and immune condition of Pacific white shrimp, Litopenaeus vannamei juveniles at very low salinity. Acta Scientiarum Naturalium Universitatis Sunyatseni. 44: 217-223.
Pandian, T.J. 1989. Protein requirements of fish and prawns cultured in Asia. Proceedings third Asian Fish Nutrition Network Meeting. Filipinas: 11-22.
Pascual, C., Zenteno, E., Guzon, G., Sanchez, A., Gaxiola, A., Tabeada, G., Suarez, J. & Rosas, T. 2004. Litopenaus vannamei juveniles energetic balance and immunological response to dietary protein. Aqcuaculture. 236: 431-450.
Quintero, H. E. ; Roy, L. A. 2010. Practical feed management in semi-intensive systems for shrimp culture: The shrimp book 2010 pp.443-453 ref.15. Alday-Sanz, V. (Editores), ISBN : 9781904761594, Record Number : 20113353954, Nottingham University Press, Nottingham, UK.
Smith, L.L., Lee, P.G. Lawrence, A. & Strawn, K. 1985. Growth and digestibility by three sizes of Penaeus vannamei Boone: effects of dietary protein level and protein source. Aquaculture 46: 85-96.
Sui, L., Ma, G. & Deng, Y. 2015. Effect of dietary protein level and salinity on growth, survival, enzymatic activities and amino-acid composition of the white shrimp Litopenaeus vannamei (Boone, 1931) juveniles. Crustaceana. 88: 82–95.
Tacon, A.G.J. & Akiyama, D. 1997. Feed Ingredients. In: Crustacean Nutrition, Advances in World Aquaculture, Volume 6. World Aquaculture Society, Baton Rouge, US.
Wasielesky, W., Atwood, H. & Browdy, C. 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(1-4):396-403.
Xia, S., Li Y., Wang, W., Rajkumar, M., Vasagam, K. & Paramasivam, K. 2010 Influence of dietary protein levels on growth, digestibility, digestive enzyme activity and stress tolerance in white-leg shrimp, Litopenaeus vannamei (Boone, 1931), reared in high-density tank trials. Aquaculture Research. 41: 1845–54.
Yaemsooksawat, N., Jintasataporn, O., Areechon, N., Puntuma-o-paas, S. & Thongtuak, C. 2008. Effect of dietary protein level on growth and immunity of Litopenaeus vannamei, Boone 1931. Songklanakarin Journal of Science and Technology. 31(1): 15-20.
Zainuddin, H., Haryati H. & Aslamyah, S. 2014. Effect of Dietary Carbohydrate Levels and Feeding Frequencies on Growth and Carbohydrate Digestibility by White Shrimp Litopenaeus vannamei Under Laboratory Conditions. Journal of Aquaculture Research Development. 5:274.
Zhang, S., Li, J., Wu, X., Zhong, W., Xian, J., Liao, S. & Wang, A. 2013. Effects of different dietary lipid level on the growth, survival and immune-relating genes expression in Pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology. 34: 1131–1138.

Descargas

Publicado

2021-09-08

Número

Sección

Artículos