Elaboración de películas comestibles a base de nanopartículas de Carbonato de Calcio y plastificantes mediante la optimización del proceso extrusión-casting

Autores/as

  • Víctor Limón-Valenzuela Español
  • Ernesto Aguilar-Palazuelos Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Sinaloa
  • Fernando Martínez-Bustos Español
  • Álvaro Montoya-Rodriguez Español
  • Irma Leticia Camacho-Hernández Español
  • José de Jesús Zazueta-Morales Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Sinaloa
  • Noelia Jacobo-Valenzuela Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Sinaloa
  • Armando Carrillo-López Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Sinaloa

DOI:

https://doi.org/10.18633/biotecnia.v24i3.1508

Palabras clave:

Películas comestibles de almidón, Nanopartículas de CaCO3, Tecnología de extrusión, Técnica de casting, Propiedades microestructurales

Resumen

Para la conservación de frutas y hortalizas, se pueden producir y desarrollar películas comestibles (PC). Para producir PC, el almidón es considerado uno de los biopolímeros con mayor potencial mediante diferentes técnicas de procesamiento como la extrusión-casting. El objetivo fue estudiar el efecto de las nanopartículas de carbonato de calcio (NPsCC) y plastificantes (sorbitol-glicerol (80-20%; p/p)) mediante tecnologías combinadas de extrusión (EXT)-casting (CT) para obtener PC con propiedades mecánicas y de barrera mejoradas. La mezcla almidón de maíz-plastificantes fueron procesados en un extrusor de doble tornillo para obtener almidón termoplástico modificado seguido de la adición de NPsCC en el casting para la formación final de la PC. Se utilizó un diseño híbrido (cuatro factores; veintiún tratamientos) de la metodología de superficie de respuesta para el proceso de optimización. Se caracterizó PC óptima acorde a propiedades mecánicas y de barrera, además, de propiedades microestructurales (difracción de rayos X, Microscopía Electrónica de Barrido) para determinar el daño causado en el almidón durante EXT y CT. En conclusión, es posible obtener PC con mayor resistencia a la rotura y deformación, así como, menor permeabilidad al vapor de agua y solubilidad, mediante el uso de NPsCC y plastificantes, utilizando la combinación EXT-CT.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguilar-Palazuelos, E., Martínez-Bustos, F., Jiménez-Arévalo, O. A., Galicia-García, T. y Delgado-Rangel, J. 2007. Potentiality of some natural fibres and native starch for making biodegradable materials. In: KLENING, T. P. (ed.) Food Engineering Research Developments. Nova Science Publishers, Inc.

Aguilar‐Palazuelos, E., Zazueta‐Morales, J. d. J. y Martínez‐Bustos, F. 2006. Preparation of high‐quality protein‐based extruded pellets expanded by microwave oven. Cereal Chemistry, 83(4): 363-369.

Aguirre-Joya, J. A., Cerqueira, M. A., Ventura-Sobrevilla, J., Aguilar-Gonzalez, M. A., Carbó-Argibay, E., Castro, L. P. y Aguilar, C. N. 2019. Candelilla Wax-Based Coatings and Films: Functional and Physicochemical Characterization. Food and Bioprocess Technology, 12(10): 1787-1797.

Arvanitoyannis, I., Psomiadou, E. y Nakayama, A. 1996. Edible films made from sodium casemate, starches, sugars or glycerol. Part 1. Carbohydrate Polymers, 31(4): 179-192.

ASTM, A. S. F. T. A. M. 1995. Standard Test Method for Protrusion Puncture Resistance of Stretch Wrap Film. Vol 14.02 West Conshohocken, PA: ASTM International.

Bhattacharya, M. y Hanna, M. 1987. Kinetics of starch gelatinization during extrusion cooking. Journal of Food science, 52(3): 764-766.

Buri, M., Gane, P. A. y Blum, R. V. 2012. Composites of inorganic and/or organic microparticles and nano-calcium carbonate particles. Google Patents.

Buso-Ríos, O. I., Velázquez, G., Járquin-Enríquez, L. y Flores-Marínez, N. L. 2020. Efecto de la concentración de almidón y aceite esencial de clavo en las propiedades fisicoquímicas de las películas biodegradables. Revista Mexicana de Ingeniería Química, 19(3): 1315-1326.

Calderón-Castro, A., Vega-García, M. O., de Jesus Zazueta-Morales, J., Fitch-Vargas, P. R., Carrillo-López, A., Gutierrez-Dorado, R., Limón-Valenzuela, V. y Aguilar-Palazuelos, E. 2018. Effect of extrusion process on the functional properties of high amylose corn starch edible films and its application in mango (Mangifera indica L.) cv. Tommy Atkins. Journal of Food Science and Technology, 55(3): 905-914.

Chiumarelli, M. y Hubinger, M. D. 2014. Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids, 38: 20-27.

Dash, K. K., Ali, N. A., Das, D. y Mohanta, D. 2019. Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International Journal of Biological Macromolecules, 139: 449-458.

Duncan, T. V. 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science, 363(1): 1-24.

Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I. y Mei, L. H. I. 2015. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology, 109: 57-64.

Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A. y Ibarz, A. 2011. Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6): 292-303.

Fitch‐Vargas, P. R., Aguilar‐Palazuelos, E., de Jesús Zazueta‐Morales, J., Vega‐García, M. O., Valdez‐Morales, J. E., Martínez‐Bustos, F. y Jacobo‐Valenzuela, N. 2016. Physicochemical and microstructural characterization of corn starch edible films obtained by a combination of extrusion technology and casting technique. Journal of Food Science, 81(9): E2224-E2232.

Galindez, A., Daza, L. D., Homez-Jara, A., Eim, V. S. y Váquiro, H. A. 2019. Characterization of ulluco starch and its potential for use in edible films prepared at low drying temperature. Carbohydrate Polymers, 215: 143-150.

Ghadam, A. G. J., Idrees, M. y Naqvi, S. A. H. 2012. Morphological and Thermal Properties of CaCO3 Nanopowders Synthesized by Reverse Microemulsion Technique. International Journal of Advances in Engineering Sciences, 2(2): 1-6.

Gómez, M., McDonough, C., Rooney, L. y Waniska, R. 1989. Changes in corn and sorghum during nixtamalization and tortilla baking. Journal of Food Science, 54(2): 330-336.

Gontard, N., Guilbert, S. y Cuq, J. L. 1992. Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. Journal of Food Science, 57(1): 190-195.

Gontard, N., Guilbert, S. y Cuq, J. L. 1993. Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of Food Science, 58(1): 206-211.

Guimarães, J., Wypych, F., Saul, C., Ramos, L. y Satyanarayana, K. 2010. Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohydrate Polymers, 80(1): 130-138.

Hu, L., Dong, P. y Zhen, G. 2009. Preparation of active CaCO3 nanoparticles and mechanical properties of the composite materials. Materials Letters, 63(3-4): 373-375.

Kim, H.-Y., Lamsal, B., Jane, J.-l. y Grewell, D. 2019. Sheet-extruded films from blends of hydroxypropylated and native corn starches, and their characterization. Journal of Food Process Engineering, n/a(n/a): e13216.

Koo, S. H., Lee, K. Y. y Lee, H. G. 2010. Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocolloids, 24(6): 619-625.

Li, Y., Chen, S., Li, X., Wu, M. y Sun, J. 2015. Highly Transparent, Nanofiller-Reinforced Scratch-Resistant Polymeric Composite Films Capable of Healing Scratches. ACS Nano, 9(10): 10055-65.

Limón-Valenzuela, V., Aguilar-Palazuelos, E., Zazueta-Morales, J. d. J. y Martínez-Bustos, F. 2017. Propiedades microestructurales y de formación de pasta de pellets extrudidos elaborados a partir de almidón de maíz enriquecidos con MCP y concentrado proteínico de leche. Revista Mexicana de Ingeniería Química, 16(1): 193-205.

Maftoonazad, N. y Ramaswamy, H. 2005. Postharvest shelf-life extension of avocados using methyl cellulose-based coating. LWT-Food Science and Technology, 38(6): 617-624.

McHugh, T. H. 2000. Protein‐lipid interactions in edible films and coatings. Food/Nahrung, 44(3): 148-151.

McHugh, T. H., Avena‐Bustillos, R. y Krochta, J. 1993. Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4): 899-903.

Mehyar, G. F. y Han, J. H. 2004. Physical and Mechanical Properties of High-amylose Rice and Pea Starch Films as Affected by Relative Humidity and Plasticizer. Journal of Food Science, 69(9): E449-E454.

Mercier, C. y Feillet, P. 1975. Modification of carbohydrate components by extrusion-cooking of cereal products. Cereal Chemistry, 52: 283-297.

Oliveira, L. C., Barros, J. H. T., Rosell, C. M. y Steel, C. J. 2017. Physical and thermal properties and X-ray diffraction of corn flour systems as affected by whole grain wheat flour and extrusion conditions. Starch - Stärke, 69(9-10): 1600299.

Rodríguez-Castellanos, W., Rodrigue, D., Martínez-Bustos, F., Jiménez-Arévalo, O. y Stevanovic, T. 2015. Production and characterization of gelatin-starch polymer matrix reinforced with cellulose fibers. Polymers from Renewable Resources, 6(3): 105-118.

Roquemore, K. G. 1976. Hybrid Designs for Quadratic Response Surfaces. Technometrics, 18(4): 419-423.

Rostami, H. y Esfahani, A. A. 2019. Development a smart edible nanocomposite based on mucilage of Melissa officinalis seed/montmorillonite (MMT)/curcumin. International Journal of Biological Macromolecules, 141: 171-177.

Sahebian, S., Zebarjad, S. M., Khaki, J. V. y Sajjadi, S. A. 2009. The effect of nano-sized calcium carbonate on thermodynamic parameters of HDPE. Journal of Materials Processing Technology, 209(3): 1310-1317.

Sun, Q., Xi, T., Li, Y. y Xiong, L. 2014. Characterization of corn starch films reinforced with CaCO3 nanoparticles. PLoS One, 9(9): e106727.

Takabait, F., Mahtout, L., Pérez Villarejo, L., Carrasco Hurtado, B. y Sánchez Soto, P. J. 2016. Obtención de nanopartículas de carbonato de calcio a partir de precursores inorgánicos y sacarosa como aditivo con potencial utilización como biomaterial. Boletín de la Sociedad Española de Cerámica y Vidrio, 55(5): 179-184.

Teixeira, E. d. M., Curvelo, A. A. S., Corrêa, A. C., Marconcini, J. M., Glenn, G. M. y Mattoso, L. H. C. 2012. Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products, 37(1): 61-68.

Treviño-Garza, M. Z., García, S., del Socorro Flores-González, M. y Arévalo-Niño, K. 2015. Edible Active Coatings Based on Pectin, Pullulan, and Chitosan Increase Quality and Shelf Life of Strawberries (Fragaria ananassa). Journal of Food Science, 80(8): M1823-M1830.

Wang, Y., Zhang, R., Ahmed, S., Qin, W. y Liu, Y. 2019. Preparation and Characterization of Corn Starch Bio-Active Edible Packaging Films Based on Zein Incorporated with Orange-Peel Oil. Antioxidants (Basel), 8(9).

Yan, Q., Hou, H., Guo, P. y Dong, H. 2012. Effects of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films. Carbohydrate Polymers, 87(1): 707-712.

Yildirim-Yalcin, M., Seker, M. y Sadikoglu, H. 2019. Development and characterization of edible films based on modified corn starch and grape juice. Food Chemistry, 292: 6-13.

Younis, H. G. R. y Zhao, G. 2019. Physicochemical properties of the edible films from the blends of high methoxyl apple pectin and chitosan. International Journal of Biological Macromolecules, 131: 1057-1066.

Zhong, Y. y Li, Y. 2014. Effects of glycerol and storage relative humidity on the properties of kudzu starch-based edible films. Starch - Stärke, 66(5-6): 524-532.

Publicado

2022-10-14

Cómo citar

Limón-Valenzuela, V. ., Aguilar-Palazuelos, E., Martínez-Bustos, F., Montoya-Rodriguez, Álvaro, Camacho-Hernández, I. L., Zazueta-Morales, J. de J., … Carrillo-López, A. (2022). Elaboración de películas comestibles a base de nanopartículas de Carbonato de Calcio y plastificantes mediante la optimización del proceso extrusión-casting. Biotecnia, 24(3), 52–62. https://doi.org/10.18633/biotecnia.v24i3.1508

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.