Uso de cepas de Pycnoporus sanguineus para la producción de enzimas con potencial uso en la industria de la panificación

Autores/as

  • Susana Daniela Salinas Sánchez
  • Iosvany López-Sandin
  • Carlos E. Hernández-Luna
  • Juan Francisco Contreras-Cordero
  • Gerardo Méndez-Zamora
  • Carlos A. Hernández-Martínez
  • Guadalupe Gutiérrez-Soto Universidad Autonoma de Nuevo Leon

DOI:

https://doi.org/10.18633/biotecnia.v24i1.1529

Palabras clave:

basidiomicetos, carbohidrolasas, lacasa, cepas nativas

Resumen

El uso de enzimas como α-amilasas, xilanasas y glucosidasas es una buena alternativa para obtener una mayor eficiencia en los productos de la industria panificadora, sin dejar de mencionar la lacasa que ha mostrado un potencial prometedor. Así, el objetivo de este estudio fue obtener concentrados enzimáticos de xilanasas, amilasas, celulasas y lacasas a partir de cepas nativas de Pycnoporus sanguineus. Para lo cual, se evaluó el efecto del medio de cultivo sobre la producción de lacasa juntamente con el escrutinio en medio sólido para la detección de xilanasas, amilasas y celulasas. A los concentrados enzimáticos obtenidos se les determinaron las unidades de lacasa y carbohidrolasas. Los títulos más altos de lacasa se presentaron en el medio Tx2. Con respecto a las carbohidrolasas, se detectaron en diferentes niveles de actividad y combinaciones. El concentrado con altos niveles de amilasa y lacasa fue CH116, mientras que LE90 tuvo la mayor actividad de xilanasa y LE133 de celulasa. La cepa CH116 fue productora de amilasa, celulasa, xilanasa y lacasa, siendo la de mayor potencial en la industria panificadora, mientras que LE90 puede ser utilizada en la industria papelera por su combinación de xilanasas y lacasa.

Citas

Abadulla, E., Tzanov, T., Costa, S., Robra, K.H., Cavaco-Paulo, A. y Gübitz, G.M. 2000. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Applied and environmental microbiology. 66(8): 3357-3362.

Álvarez, J., Sánchez, C., Díaz, R. y Díaz-Godínez, G. 2016. Characterization of production of laccases, cellulases and xylanases of Pleurotus ostreaus grown on solid-state fermentation using an inert support. Revista Mexicana de Ingeniería Química. 15(2): 323-331.

Bertrand, B., Martínez-Morales, F., Tinoco-Valencia, R., Rojas, S., Acosta-Urdapilleta, L. y Trejo-Hernández, M.R. 2015. Biochemical and molecular characterization of laccase isoforms produced by the white-rot fungus Trametes versicolor under submerged culture conditions. Journal of Molecular Catalysis B: Enzymatic. 122: 339–347.

Drozlowska, E. 2019. The use of enzymatic fungal activity in the food industry-review. World Scientific News. 116: 222-229.

Gauna, A., Larran, A.S., Feldman, S.R., Permingeat, H.R. y Perotti, V. E. 2020. Secretome characterization of the lignocellulose-degrading fungi Pycnoporus sanguineus and Ganoderma applanatum. bioRxiv. Woodbury, NY

Gómez, M., Gutkoski, L.C. y Bravo‐Núñez, Á. 2020. Understanding whole‐wheat flour and its effect in breads: A review. Comprehensive Reviews in Food Science and Food Safety. 19(6): 3241-3265.

Gutiérrez -Soto, G., Medina-González, G.E., García- Zambrano, E.A., Treviño-Ramírez, J. E. y Hernández-Luna, E. 2015. Selection and Characterization of a Native Pycnoporus sanguineus Strain as a Lignocellulosic Extract Producer from Submerged Cultures of Various Agroindustrial Wastes. BioResources. 10(2): 3564-3576.

Kathirgamanathan, M., Abayasekara, C.L., Kulasooriya, S.A., Wanigasekera, A. y Ratnayake, R.R. 2017. Evaluation of 18 isolates of basidiomycetes for lignocellulose degrading enzymes. Ceylon Journal of Science. 46(4): 77-84.

Khokhar, I., Mukhtar, I. y Mushtaq, S. 2011. Isolation and screening of amylolytic filamentous fungi. Journal of Applied Sciences and Environmental Management. 15(1): 203-206.

Kobakhidze, A., Asatiani, M., Kachlishvili, E. y Elisashvili, V. 2016. Induction and catabolite repression of cellulase and xylanase synthesis in the selected white-rot basidiomycetes. Annals of Agrarian Science. 14(3): 169-176.

Kumla, J., Suwannarach, N., Sujarit, K., Penkhrue, W., Kakumyan, P., Jatuwong, K., Vadthanarat, S. y Lumyong, S. 2020. Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules. 25(12): 2811.

Li, S., Tang, B., Liu, Y., Chen, A., Tang, W. y Wei, S. 2016. High-level production and characterization of laccase from a newly isolated fungus Trametes sp. LS-10C. Biocatalysis and Agricultural Biotechnology. 8: 278–285.

Liu, W., Brennan, M. A., Serventi, L. y Brennan, C.S. 2017. Effect of cellulase, xylanase and α-amylase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran. Food chemistry 234: 93-102.

Medina-González, G.E., H. Bernal Barragán, C.E. Hernández-Luna, C.A. Hernández-Martínez, G. y Gutiérrez-Soto, G. 2016. Uso de basidiomicetos nativos en la biotransformación del pasto buffel (Cenchrus ciliaris) para mejorar la calidad nutricional. Revista Mexicana de Micología. 43: 31-35.

Miguel, Â.S.M., Martins-Meyer, T.S., Figueiredo, E.V.D.C., Lobo, B.W.P. y Dellamora-Ortiz, G.M. 2013. Enzymes in bakery: current and future trends. En: Food industry (Ed.), pp 278-321. IntechOpen. Inc., Londres.

Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry. 31(3): 426-428.

Naidu, Y., Siddiqui, Y. y Idris, A.S. 2020. Comprehensive studies on optimization of ligno-hemicellulolytic enzymes by indigenous white rot hymenomycetes under solid-state cultivation using agro-industrial wastes. Journal of environmental management. 259: 110056.

Niderhaus, C., Garrido, M., Insani, M., Campos, E., y Wirth, S. 2018. Heterologous production and characterization of a thermostable GH10 family endo-xylanase from Pycnoporus sanguineus BAFC 2126. Process Biochemistry. 67: 92-98.

Niño-Medina, G., Gutiérrez-Soto, G., Urías-Orona, V. y Hernández-Luna, C.E. 2017. Effect of laccase from Trametes maxima CU1 on physicochemical quality of bread. Cogent Food & Agriculture. 3(1): 1328762.

Okal, E.J., Aslam, M.M., Karanja, J.K. y Nyimbo, W.J. 2020. Mini review: Advances in understanding regulation of cellulase enzyme in white-rot basidiomycetes. Microbial Pathogenesis. 147: 104410.

Orlikowska, M., Rostro-Alanis, M.D.J., Bujacz, A., Hernández-Luna, C., Rubio, R., Parra, R. y Bujacz, G. 2018. Structural studies of two thermostable laccases from the white-rot fungus Pycnoporus sanguineus. International journal of biological macromolecules. 107: 1629-1640.

Patel, A.K., Singhania, R.R. y Pandey, A. 2016. Novel enzymatic processes applied to the food industry. Current Opinion in Food Science. 7: 64-72.

Patel, A.K., Singhania, R.R., y Pandey, A. 2017. Production, purification, and application of microbial enzymes. En: Biotechnology of Microbial Enzymes (ed.), pp. 13-41. Academic Press. Inc., Cambridge.

Pezzella, C., Lettera, V., Piscitelli, A., Giardina, P. y Sannia, G. 2012. Transcriptional analysis of Pleurotus ostreatus laccase genes. Applied Microbiology and Biotechnology. 97(2): 705-717.

Pozdnyakova, N.N., Turkovskaya, O.V., Yudina, E.N. y Rodakiewicz-Nowak, Y. 2006. Yellow laccase from the fungus Pleurotus ostreatus D1: purification and characterization. Applied Biochemistry and microbiology. 42(1): 56-61.

Ramírez-Cavazos, L. I., Junghanns, C., Ornelas-Soto, N., Cárdenas-Chávez, D.L., Hernández-Luna, C., Demarche, P., Enaud, E., García-Morales, R., Agathos, S.N. y Parra, R. 2014. Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals. Journal of Molecular Catalysis B: Enzymatic. 108: 32-42.

Riegas-Villalobos, A., Martínez-Morales, F., Tinoco-Valencia, R., Serrano-Carreón, L., Bertrand, B. y Trejo-Hernández, M.R. 2020. Efficient removal of azo-dye Orange II by fungal biomass absorption and laccase enzymatic treatment. 3 Biotech. 10(4): 1-10.

Rohr, C.O., Levin, L.N., Mentaberry, A.N. y Wirth, S.A. 2013. A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome. PloS one. 8(12): e81033.

Salazar-López, M., Rostro-Alanis, M.D.J., Castillo-Zacarías, C., Parra-Guardado, A.L., Hernández-Luna, C., Iqbal, H.M. y Parra-Saldivar, R. 2017. Induced degradation of anthraquinone-based dye by laccase produced from Pycnoporus sanguineus (CS43). Water, Air, & Soil Pollution. 228(12): 1-10.

Sin, M.K., Hyde, K.D. y Pointing, S.B. 2002. Comparative enzyme production by fungi from diverse lignocellulosic substrates. Journal of Microbiology. 40(3): 241-244.

Singh, P. y Kumar, S. 2019. Microbial enzyme in food biotechnology. En: Enzymes in Food Biotechnology (ed.), pp 19-28. Academic Press. Inc., Cambridge.

Singh, R., Singh, A. y Sachan, S. 2019. Enzymes used in the food industry: Friends or foes? En: Enzymes in food biotechnology (ed.), pp 827-843. Academic Press. Inc., Cambridge.

Tebben, L., Shen, Y. y Li, Y. 2018. Improvers and functional ingredients in whole wheat bread: A review of their effects on dough properties and bread quality. Trends in Food Science & Technology. 81: 10-24.

Valadares, F., Gonçalves, T.A., Damasio, A., Milagres, A.M., Squina, F.M., Segato, F. y Ferraz, A. 2019. The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures. Enzyme and microbial technology. 130: 109370.

Veloz Villavicencio, E., Mali, T., Mattila, H.K., y Lundell, T. 2020. Enzyme activity profiles produced on wood and straw by four fungi of different decay strategies. Microorganisms. 8(1): 73.

Vrsanska, M., Voberkova, S., Langer, V., Palovcikova, D., Moulick, A., Adam, V. y Kopel, P. 2016. Induction of Laccase, Lignin Peroxidase and Manganese Peroxidase Activities in White-Rot Fungi Using Copper Complexes. Molecules. 21(11): 1553.

Wang, W., Liu, F., Jiang, Y., Wu, G., Guo, L., Chen, R., Chen, B., Lu, Y., Dai, Y. y Xie, B. 2015. The multigene family of fungal laccases and their expression in the white rot basidiomycete Flammulina velutipes. Gene. 563(2): 142-149.

Zhang, Y., He, S. y Simpson, B.K. 2018. Enzymes in food bioprocessing — novel food enzymes, applications, and related techniques. Current Opinion in Food Science. 19: 30-35.

Zhuo, R., Yuan, P., Yang, Y., Zhang, S., Ma, F. y Zhang, X. 2017. Induction of laccase by metal ions and aromatic compounds in Pleurotus ostreatus HAUCC 162 and decolorization of different synthetic dyes by the extracellular laccase. Biochemical Engineering Journal. 117: 62-72.

Zimbardi, A., Camargo, P., Carli, S., Aquino Neto, S., Meleiro, L., Rosa, J., Andrade, A., Jorge, J. y Furriel, R. 2016. A High Redox Potential Laccase from Pycnoporus sanguineus RP15: Potential Application for Dye Decolorization. International Journal of Molecular Science. 17(5): 672.

Descargas

Publicado

2022-02-23

Número

Sección

Artículos