Antibacterial and antimycobacterial activity of white shrimp (Litopenaeus vannamei) exoskeleton and cephalothorax by-products extracts: fatty acids profile of the active hexanic shrimp cephalothorax extract

Autores/as

  • Carmen María López-Saiz Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora.
  • Enrique Wenceslao Coronado-Aceves Instituto de Investigación Biomédica. Universidad Autónoma de México. https://orcid.org/0000-0002-9892-2315
  • Rosario Tavera-Hernández Instituto de Química. Universidad Autónoma de México. https://orcid.org/0000-0001-5501-2496
  • Clara Inés Espitia-Pinzón Instituto de Investigación Biomédica. Universidad Autónoma de México.
  • Manuel Jiménez-Estrada Instituto de Química. Universidad Autónoma de México.
  • Patricia Guadalupe Morán-Corrales Departamento de Ingeniería Química y Metalurgia. Universidad de Sonora.
  • Martin Samuel Hernández Zazueta Universidad de Sonoa

DOI:

https://doi.org/10.18633/biotecnia.v24i2.1648

Palabras clave:

Litopenaeus vannamei, antimicrobiano, Mycobacterium, sub-productos, ácidos grasos

Resumen

El objetivo de este estudio fue evaluar el potencial antibacteriano y antimicobacteriano de los sub-productos del camarón blanco (Litopenaeus vannamei). Sonora, México es el segundo estado productor de camarón. Fueron obtenidos los siguientes extractos: extracto hexánico, metanólico y acuoso del exoesqueleto (ExHex, ExMe, ExAc); y extracto hexánico, acetónico y metanólico del cefalotórax (CeHex, CeAce, CeMe). El efecto antibacteriano fue evaluado mediante el método de microdilución en caldo contra las bacterias Gram-positivas: Enterococcus faecalis American Type Culture Collection (ATCC) 51299, Staphylococcus aureus ATCC 25293, y Staphylococcus epidermidis; bacterias Gram-negativas: Escherichia coli ATCC 25922, Klebsiella pneumoniae, Pseudomonas aeruginosa ATCC 10145, y Salmonella typhimurium; y Mycobacterium bovis bacilo Calmette-Guérin (M. bovis BCG) cepa Danesa. CeHex resultó activo contra todas las bacterias Gram-positivas y Gram-negativas (MIC50= 400 ug mL-1) y contra M. bovis BCG (MIC100= 250 ug mL-1). Mediante cromatografía de gases (GC) de CeHex se identificaron los ácidos grasos: oleico, linoleico, palmítico, esteárico, behénico, palmitoleico y linolénico. La fuerte actividad antibacteriana de CeHex y la identificación de sus principales components químicos justifican estudios posteriores en las aplicaciones clínicas de este sub-producto marino.

Citas

AlFaris, N.A., Alshammari, G.M., AlTamimi, J.Z., AlMousa, L.A., Alagal, R.I., AlKehayez, N.M., Aljabryn, D.H., Alsayadi, M.M. and Yahya, M.A. 2021. Evaluating the effects of different processing methods on the nutritional composition of shrimp and the antioxidant activity of shrimp powder. Saudi Journal of Biological Sciences. 29: 640-649.

Altaf, M., Miller, C. H., Bellows, D. S. and O’Toole, R. 2010. Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors. Tuberculosis. 90: 333-337.

Armenta, R.E., Guerrero-Legarreta, I. and Huerta, S. 2002. Extracción de caroproteinas a partir de residuos de camarón fermentados. Academia Mexicana de Investigación y Docencia en Ingeniería Química. 1: 49–55.

Baizman, E. R., Branstrom, A. A., Longley, C. B., Allanson, N., Sofia, M. J., Gange, D., and Goldman, R. C. 2000. Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin, an inhibitor of bacterial transglycosylase. Microbiology. 146: 3129-3140.

Bharathi, R., Vigneshpriya, D. and Krishnaveni, N. 2019. Comparison of proximate and fatty acid composition of shell of marine edible shrimps, Heterocarpus gibbosus (Bate, 1888) and Aristeus alcocki (Ramadan, 1938). International Journal of Zoology and Applied Biosciences. 4: 75–79.

Brown, D. G., Lister, T. and May-Dracka, T. L. 2014. New natural products as new leads for antibacterial drug discovery. Bioorganic & medicinal chemistry letters. 24: 413-418.

Carson, D.D. and Daneo-Moore, L. Effects of fatty acids on lysis of Streptococcus faecalis. 1980. Journal of Bacteriology. 141: 1122–1126.

Chamberlain, N. R., Mehrtens, B. G., Xiong, Z. H. U. O., Kapral, F. A., Boardman, J. L. and Rearick, J. I. 1991. Correlation of carotenoid production, decreased membrane fluidity, and resistance to oleic acid killing in Staphylococcus aureus 18Z. Infection and Immunity. 59: 4332-4337.

Choi, W. H. 2016. Evaluation of anti-tubercular activity of linolenic acid and conjugated-linoleic acid as effective inhibitors against Mycobacterium tuberculosis. Asian Pacific Journal of Tropical Medicine. 9: 125-129.

Collins, L. A., and Franzblau, S. G. 1997. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrobial Agents and Chemotherapy. 41: 1004-1009.

Coronado-Aceves, E. W., Sánchez-Escalante, J. J., López-Cervantes, J., Robles-Zepeda, R. E., Velázquez, C., Sánchez-Machado, D. I., and Garibay-Escobar, A. 2016. Antimycobacterial activity of medicinal plants used by the Mayo people of Sonora, Mexico. Journal of Ethnopharmacology. 190: 106-115.

Daletos, G., Ancheeva, E., Chaidir, C., Kalscheuer, R., and Proksch, P. 2016. Antimycobacterial metabolites from marine invertebrates. Archiv der Pharmazie. 349: 763-773.

Desbois, A. P. and Smith, V. J. 2010. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology. 85: 1629-1642.

Djellouli, M., López-Caballero, M. E., Arancibia, M. Y., Karam, N. and Martínez-Alvarez, O. 2020. Antioxidant and antimicrobial enhancement by reaction of protein hydrolysates derived from shrimp by-products with glucosamine. Waste and Biomass Valorization. 11: 2491-2505.

Greenway, D. L. A. and Dyke, K. G. H. 1979. Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. Microbiology. 115: 233-245.

Gulzar, S. and Benjakul, S. 2018. Ultrasound waves increase the yield and carotenoid content of lipid extracted from Ccephalothorax of pacific white shrimp (Litopenaeus vannamei). European Journal of Lipid Science and Technology. 120: 1700495.

Guzmán-Gutiérrez, S. L., Silva-Miranda, M., Krengel, F., Huerta-Salazar, E., León-Santiago, M., Díaz-Cantón, J. K., Espitia-Pinzón, C. and Reyes-Chilpa, R. 2020. Antimycobacterial Activity of Alkaloids and Extracts from Tabernaemontana alba and T. arborea. Planta Medica. 88: 53-61.

Kanetsuna, F. 1985. Bactericidal effect of fatty acids on mycobacteria, with particular reference to the suggested mechanism of intracellular killing. Microbiology and Immunology. 29: 127-141.

Hernández‐Zazueta, M. S., García‐Romo, J. S., Noguera‐Artiaga, L., Luzardo‐Ocampo, I., Carbonell‐Barrachina, Á. A., Taboada‐Antelo, P., ... & Burgos‐Hernández, A. (2021). Octopus vulgaris ink extracts exhibit antioxidant, antimutagenic, cytoprotective, antiproliferative, and proapoptotic effects in selected human cancer cell lines. Journal of Food Science, 86(2), 587-601.

Hernández-Zazueta, M. S., Luzardo-Ocampo, I., García-Romo, J. S., Noguera-Artiaga, L., Carbonell-Barrachina, Á. A., Taboada-Antelo, P., ... & Burgos-Hernández, A. (2021). Bioactive compounds from Octopus vulgaris ink extracts exerted anti-proliferative and anti-inflammatory effects in vitro. Food and Chemical Toxicology, 151, 112119.

Kochan, I., and Berendt, M. 1974. Fatty acid-induced tuberculocidal activity in sera of guinea pigs treated with bacillus Calmette-Guerin and lipopolysaccharide. Journal of Infectious Diseases. 129: 696-704.

Kondo, E. and Kanai, K. 1972. The lethal effect of long-chain fatty acids on mycobacteria. Japanese Journal of Medical Science and Biology. 25: 1-13.

Heu, M.S., Kim, J.S. and Shahidi, F. 2003. Components and nutritional quality of shrimp processing by-products. Food Chemistry. 82: 235–242.

Jurno, A. C., Netto, L. O. C., Duarte, R. S., and Machado, R. R. P. 2019. The search for plant activity against tuberculosis using breakpoints: A review. Tuberculosis. 117: 65-78.

Kandra, P., Challa, M.M. and Kalangi P.J.H. 2012. Efficient use of shrimp waste: present and future trends. Applied Microbiology and Biotechnology. 93: 17–29.

Laport, M. S., Santos, O. C. S., and Muricy, G. 2009. Marine sponges: potential sources of new antimicrobial drugs. Current pharmaceutical biotechnology. 10: 86-105.

López-Cervantes, J., Adan-Bante, N.P. and Sánchez-Machado, D.I. 2010. Separation and biochemical characterization of the products from fermented shrimp wastes. In: Le Behan, E. (Ed.), Sea By-Products as Real Material: New Ways of Application. Transworld Research Network. 2010: 1–16.

López-Saiz, C.M., Hernández, J., Cinco-Moroyoqui, F.J., Velázquez, C., Ocaño-Higuera, V.M., Plascencia-Jatomea, M., Robles-Sánchez, M., Machi-Lara, L. and Burgos-Hernández, A. 2016. Antimutagenic compounds of white shrimp (Litopenaeus vannamei ): isolation and structural elucidation. Evidence-Based Complementary and Alternative Medicine. 2016: 1–7.

López-Saiz, C.-M., Velázquez, C., Hernández, J., Cinco-Moroyoqui, F.-J., Plascencia-Jatomea, M., Robles-Sánchez, M., Machi-Lara, L. and Burgos-Hernández, A. 2014. Isolation and structural elucidation of antiproliferative compounds of lipidic fractions from white shrimp muscle (Litopenaeus vannamei). International Journal of Molecular Sciences. 15: 23555–23570.

Mandeville, S., Yaylayan, V. and Simpson, B.K.. 1992. Proximate analysis, isolation and identification of amino acids and sugars from raw and cooked commercial shrimp waste. Food Biotechnology. 6: 51–64.

Mukherjee, G., Mukhopadhyay, B. and Sil, A. K. 2021. Edible marine algae: a new source for anti-mycobacterial agents. Folia microbiologica. 66: 99-105.

Mohanasrinivasan, V., Mishra, M., Paliwal, J. S., Singh, S. K., Selvarajan, E., Suganthi, V., and Devi, C. S. 2014. Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. Biotech. 4: 167-175.

Molina-Salinas, G. M., Ramos-Guerra, M. C., Vargas-Villarreal, J., Mata-Cárdenas, B. D., Becerril-Montes, P., and Said-Fernández, S. 2006. Bactericidal activity of organic extracts from Flourensia cernua DC against strains of Mycobacterium tuberculosis. Archives of Medical Research. 37: 45-49.

Navarro-Navarro, M., Ruiz-Bustos, P., Valencia, D., Robles-Zepeda, R., Ruiz-Bustos, E., Virués, C., Hernández, J., Domínguez, Z. and Velazquez, C. 2013. Antibacterial activity of Sonoran propolis and some of its constituents against clinically significant Vibrio species. Foodborne Pathogens and Disease. 10: 150-158.

Nirmal, N. P., Santivarangkna, C., Rajput, M. S. and Benjakul, S. 2020. Trends in shrimp processing waste utilization: An industrial prospective. Trends in Food Science & Technology. 103: 20-35.

Núñez-Gastélum, J.A., Sánchez-Machado, D.I., López-Cervantes, J., Paseiro-Losada, P., Sendón, R., Sanches-Silva, A.T., Costa, H.S., Aurrekoetxea, G.P., Angulo, I. and Soto-Valdez, H. 2011. Evaluación físico-química de aceite pigmentado obtenido de la cabeza de camarón. Grasas y Aceites. 62: 321–327.

Nwanna, L. C., Balogun, A. M., Ajenifuja, Y. F. and Enujiugha, V. N. 2004. Replacement of fish meal with chemically preserved shrimp head in the diets of African catfish, Clarias gariepinus. Journal of Food Agriculture and Environment. 2: 79-83.

Osuna-Ruiz, I., López-Saiz, C. M., Burgos-Hernández, A., Velázquez, C., Nieves-Soto, M., and Hurtado-Oliva, M. A. 2016. Antioxidant, antimutagenic and antiproliferative activities in selected seaweed species from Sinaloa, Mexico. Pharmaceutical Biology. 54: 2196-2210.

Palomino, J. C., Martin, A., Camacho, M., Guerra, H., Swings, J., and Portaels, F. 2002. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy. 46: 2720-2722.

Peñuelas-Urquides, K., Villarreal-Treviño, L., Silva-Ramírez, B., Rivadeneyra-Espinoza, L., Said-Fernández, S., and León, M. B. D. 2013. Measuring of Mycobacterium tuberculosis growth: a correlation of the optical measurements with colony forming units. Brazilian Journal of Microbiology. 44: 287-290.

Pettit, G. R., Knight, J. C., Collins, J. C., Herald, D. L., Pettit, R. K., Boyd, M. R. and Young, V. G. 2000. Antineoplastic agents 430. Isolation and structure of cribrostatins 3, 4, and 5 from the Republic of Maldives Cribrochalina species. Journal of Natural Products. 63: 793-798.

Rwegasila, E., Mubofu, E.B., Nyandoro, S. S., Erasto, P. and Munissi, J. J. 2016. Preparation, characterization and in vivo antimycobacterial studies of panchovillin-chitosan nanocomposites. International Journal of Molecular Sciences. 17: 1559.

Sachindra, N.M., Bhaskar, N. and Mahendrakar, N.S. 2006. Recovery of carotenoids from shrimp waste in organic solvents. Waste Management. 26: 1092–1098.

Sandoval-Montemayor, N. E., García, A., Elizondo-Treviño, E., Garza-González, E., Alvarez, L. and del Rayo Camacho-Corona, M. 2012. Chemical composition of hexane extract of Citrus aurantifolia and anti-Mycobacterium tuberculosis activity of some of its constituents. Molecules, 17(9), 11173-11184.

Senevirathne, M., and Kim, S. K. 2012. Utilization of seafood processing by-products: medicinal applications. Advances in Food and Nutrition Research. 65: 495-512.

Takeungwongtrakul, S., Benjakul, S. and H-kittikun, A. 2012. Lipids from cephalothorax and hepatopancreas of Pacific white shrimp (Litopenaeus vannamei): Compositions and deterioration as affected by iced storage. Food Chemistry. 134: 2066–2074.

Taneja, N. K. and Tyagi, J. S. 2007. Resazurin reduction assays for screening of anti-tubercular compounds against dormant and actively growing Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis. Journal of Antimicrobial Chemotherapy. 60: 288-293.

TheFishSite: Mexican shrimp sector set for 177,000 tonne year. [Consulted in December 21, 2021] 2021. Available in: https://thefishsite.com/articles/mexican-shrimp-sector-set-for-177-000-tonne-year

Torres, Y. R., Berlinck, R. G., Nascimento, G. G., Fortier, S. C., Pessoa, C. and de Moraes, M. O. 2002. Antibacterial activity against resistant bacteria and cytotoxicity of four alkaloid toxins isolated from the marine sponge Arenosclera brasiliensis. Toxicon. 40: 885-891.

Velazquez, C., Navarro, M., Acosta, A., Angulo, A., Dominguez, Z., Robles, R., Lugo E, Goycoolea FM, Velazquez EF, Astiazaran H, and Hernandez, J. 2007. Antibacterial and free‐radical scavenging activities of Sonoran propolis. Journal of Applied Microbiology. 103: 1747-1756.

Vilar-Junior, J. C., Ribeaux, D. R., Alves da Silva, C. A., Campos-Takaki, D. and Maria, G. 2016. Physicochemical and antibacterial properties of chitosan extracted from waste shrimp shells. International Journal of Microbiology, 2016: 7.

Wang, L., Wang, J., Liu, J. and Liu, Y. 2018. Antitubercular marine natural products. Current Medicinal Chemistry. 25: 2304-2328.

Descargas

Publicado

2022-05-31

Cómo citar

López-Saiz, C. M. ., Coronado-Aceves, E. W. ., Tavera-Hernández, R. ., Espitia-Pinzón, C. I. ., Jiménez-Estrada, M. ., Morán-Corrales, P. G. ., & Hernández Zazueta, M. S. (2022). Antibacterial and antimycobacterial activity of white shrimp (Litopenaeus vannamei) exoskeleton and cephalothorax by-products extracts: fatty acids profile of the active hexanic shrimp cephalothorax extract. Biotecnia, 24(2), 45–52. https://doi.org/10.18633/biotecnia.v24i2.1648

Número

Sección

Artículos originales