Desarrollo de un biomaterial a base de mezcla almidón-gelatina: Propiedades físicas, mecánicas y de barrera

Autores/as

  • Xochitl Alejandra Pérez-Marroquin
  • Apolonio Vargas-Torres
  • Rafael Germán Campos-Montiel
  • Graciela Callejas-Quijada
  • Gieraldin Campos-Lozada
  • Arely León-López
  • Gabriel Aguirre-Alvarez Universidad Autónoma del Estado de Hidalgo

DOI:

https://doi.org/10.18633/biotecnia.v24i3.1682

Palabras clave:

Chayotextle, películas, Gelatina, propiedades mecánicas, almidón

Resumen

Se prepararon películas a base de una mezcla de
almidón de chayotextle y gelatina (SG) de acuerdo a las siguientes concentraciones SG 3:1, SG 2:2, y SG 1:3. Dos controles fueron considerados en las películas; gelatina (G) y almidón (S). Se adicionó glicerol como plastificante para todos los tratamientos en un 2 %. El objetivo de esta investigación fue el estudio del efecto de las diferentes concentraciones de almidón de chayotextle y gelatina en las propiedades físicas, mecánicas y de barrera de las películas. El tratamiento G presentó la más alta solubilidad comparado con aquellos tratamientos en los que se incluyó al almidón. Los resultados FT-IR exhibieron la huella molecular característica de la gelatina y del almidón. No se detectaron nuevas bandas en los espectrómetros de las mezclas de gelatina. El más bajo porcentaje de cristalinidad apareció en las películas SG 2:2 con 37.8 %. Este valor incrementó hasta un 64.9 % en el tratamiento G. La variación de porcentajes en las mezclas almidón-gelatina produjo diferencias en las estructura y propiedades de las películas. Estas propiedades podrían ser configuradas, adaptadas y aplicadas de acuerdo a los
requerimientos de la industria de ingeniería de alimentos, farmacéutica y biomédica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acosta, S., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. 2015. Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49: 135-143.

Aguirre-Álvarez, G., Pimentel-Gonzalez, D. J., Campos-Montiel, R. G., Foster, T., & Hill, S. E. 2011. The effect of drying temperature on mechanical properties of pig skin gelatin films. Cyta-Journal of Food, 9(3): 243-249.

Ahmad, A. A., & Sarbon, N. M. 2021. A comparative study: Physical, mechanical and antibacterial properties of bio-composite gelatin films as influenced by chitosan and zinc oxide nanoparticles incorporation. Food Bioscience, 43: 101250.

Ahmad, M., Hani, N. M., Nirmal, N. P., Fazial, F. F., Mohtar, N. F., & Romli, S. R. 2015. Optical and thermo-mechanical properties of composite films based on fish gelatin/rice flour fabricated by casting technique. Progress in Organic Coatings, 84: 115-127.

Aila-Suárez, S., Palma-Rodríguez, H. M., Rodríguez-Hernández, A. I., Hernández-Uribe, J. P., Bello-Pérez, L. A., & Vargas-Torres, A. 2013. Characterization of films made with chayote tuber and potato starches blending with cellulose nanoparticles. Carbohydrate Polymers, 98(1): 102-107.

Aitboulahsen, M., El Galiou, O., Laglaoui, A., Bakkali, M., & Hassani Zerrouk, M. 2020. Effect of plasticizer type and essential oils on mechanical, physicochemical, and antimicrobial characteristics of gelatin, starch, and pectin-based films. Journal of Food Processing and Preservation, 44(6): e14480.

Al-Hassan, A. A., & Norziah, M. H. 2012. Starch-gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocolloids, 26(1): 108-117.

Alias, S. A., & Mhd Sarbon, N. 2019. Rheological, physical, and mechanical properties of chicken skin gelatin films incorporated with potato starch. npj Science of Food, 3(1): 26.

ASTM. (1989). Standard test methods for water vapor transmission of materials in sheet form. E96–80 ASTM International, Philadelphia.

Bigi, A., Panzavolta, S., & Rubini, K. 2004. Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials, 25(25): 5675-5680.

Donhowe, I. G., & Fennema, O. 1993. Water-vapor and oxigen permeability of wax films. Journal of the American Oil Chemists Society, 70(9): 867-873.

Duconseille, A., Astruc, T., Quintana, N., Meersman, F., & Sante-Lhoutellier, V. 2015. Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocolloids, 43: 360-376.

Fakhreddin Hosseini, S., Rezaei, M., Zandi, M., & Ghavi, F. F. 2013. Preparation and functional properties of fish gelatin-chitosan blend edible films. Food Chem, 136(3-4): 1490-1495.

Flores, S. K., Costa, D., Yamashita, F., Gerschenson, L. N., & Grossmann, M. V. 2010. Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion. Materials Science & Engineering C, 30(1): 196-202.

Gao, W., Zhu, J., Kang, X., Wang, B., Liu, P., Cui, B., & Abd El-Aty, A. M. 2021. Development and characterization of starch films prepared by extrusion blowing: The synergistic plasticizing effect of water and glycerol. LWT, 148: 111820.

Garcia, M. A., Martino, M. N., & Zaritzky, N. E. 2000. Microstructural characterization of plasticized starch-based films. Starch-Starke, 52(4): 118-124.

Garcı́a, M. a. A., Pinotti, A., Martino, M. N., & Zaritzky, N. E. 2004. Characterization of composite hydrocolloid films. Carbohydrate Polymers, 56(3): 339-345.

Guo, J., Ge, L., Li, X., Mu, C., & Li, D. 2014. Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocolloids, 2014 v.39: pp. 243-250.

Hernandez-Uribe, J., Agama, E., Gonzalez‐Soto, R., Bello‐Pérez, L., & Vargas-Torres, A. 2011. Isolation and characterization of Mexican chayote tuber (Sechium edule Sw.) starch. Starch - Stärke, 63.

Hosseini, S. F., Javidi, Z., & Rezaei, M. 2016. Efficient gas barrier properties of multi-layer films based on poly(lactic acid) and fish gelatin. International Journal of Biological Macromolecules, 92: 1205-1214.

Jiménez-Hernández, J., Salazar-Montoya, J. A., & Ramos-Ramírez, E. G. 2007. Physical, chemical and microscopic characterization of a new starch from chayote (Sechium edule) tuber and its comparison with potato and maize starches. Carbohydrate Polymers, 68(4): 679-686.

Kramer, M. E. 2009. Structure and function of starch-based edible films and coatings. In M. E. Embuscado & K. C. Hubber (Eds.), Edible films and coatings for food applications (pp. 113-134). New York, USA: Springer Science.

Laycock, B. G., & Halley, P. J. 2014. Chapter 14 - Starch Applications: State of Market and New Trends Starch Polymers (pp. 381-419). Amsterdam: Elsevier.

Ledward, D. A. 1986. Gelation of gelatin. In J. R. Mitchell & D. A. Ledward (Eds.), Functional properties of food macromolecules (pp. 171-202). London, U.K.: Elsevier Applied Sciences Publishers LTD.

Liu, X.-x., Wang, Y.-f., Zhang, N.-z., Shanks, R. A., Liu, H.-s., Tong, Z., . . . Yu, L. 2014. Morphology and phase composition of gelatin-starch blends. Chinese Journal of Polymer Science, 32(1): 108-114.

Loo, C. P. Y., & Sarbon, N. M. 2020. Chicken skin gelatin films with tapioca starch. Food Bioscience, 35: 100589.

Mittal, A., Garg, S., Kohli, D., Maiti, M., Jana, A. K., & Bajpai, S. 2016. Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films. Carbohydrate Polymers, 151: 926-938.

Moreno, O., Cardenas, J., Atares, L., & Chiralt, A. 2017. Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydrate Polymers, 178: 147-158.

Moreno, O., Diaz, R., Atares, L., & Chiralt, A. 2016. Influence of the processing method and antimicrobial agents on properties of starch-gelatin biodegradable films. Polymer International, 65(8): 905-914.

Mousia, Z., Farhat, I. A., Pearson, M., Chesters, M. A., & Mitchell, J. R. 2001. FTIR microspectroscopy study of composition fluctuations in extruded amylopectin-gelatin blends Biopolymers, 62(4): 208-218.

Mutungi, C., Onyango, C., Doert, T., Paasch, S., Thiele, S., Machill, S., . . . Rohm, H. 2011. Long- and short-range structural changes of recrystallised cassava starch subjected to in vitro digestion. Food Hydrocolloids, 25(3): 477-485.

Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. 2004. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chemistry, 86(3): 325-332.

Park, J. W., Scott Whiteside, W., & Cho, S. Y. 2008. Mechanical and water vapor barrier properties of extruded and heat-pressed gelatin films. LWT - Food Science and Technology, 41(4): 692-700.

Parker, R., & Ring, S. G. 2005. The Physical Chemistry of Starch. In S. Dumitriu (Ed.), Polysacharides. Structural diversity and functional versatility (Second ed., pp. 591-624). New York. USA: Marcel Dekker.

Podshivalov, A., Zakharova, M., Glazacheva, E., & Uspenskaya, M. 2017. Gelatin/potato starch edible biocomposite films: Correlation between morphology and physical properties. Carbohydrate Polymers, 157: 1162-1172.

Rivero, S., García, M. A., & Pinotti, A. 2010. Correlations between structural, barrier, thermal and mechanical properties of plasticized gelatin films. Innovative Food Science & Emerging Technologies, 11(2): 369-375.

Schrieber, R., & Gareis, H. 2007. Gelatine handbook. Theory and industrial practice Weinheim, Germany: Wiley-VCH

Sperling, L. H. 2006. Introduction to physical polymer science (Fourth ed.). New York. USA: John Wiley & Sons, Inc.

Sun, Q., Sun, C., & Xiong, L. 2013. Mechanical, barrier and morphological properties of pea starch and peanut protein isolate blend films. Carbohydrate Polymers, 98(1): 630-637.

Svagan, A., Akesson, A., Cárdenas, M., Bulut, S., Knudsen, J., Risbo, J., & Plackett, D. 2012. Transparent films based on PLA and montmorillonite with tunable oxygen barrier properties. Biomacromolecules, 13(2): 397-405.

Tao, F., Shi, C., & Cui, Y. 2018. Preparation and physicochemistry properties of smart edible films based on gelatin-starch nanoparticles. J Sci Food Agric, 98(14): 5470-5478.

Theerawitayaart, W., Prodpran, T., & Benjakul, S. 2019. Enhancement of Hydrophobicity of Fish Skin Gelatin via Molecular Modification with Oxidized Linoleic Acid. Journal of Chemistry, 2019: 5462471.

Tyuftin, A. A., & Kerry, J. P. 2021. Gelatin films: Study review of barrier properties and implications for future studies employing biopolymer films. Food Packaging and Shelf Life, 29: 100688.

Wang, K., Wang, W. H., Ye, R., Xiao, J. D., Liu, Y. W., Ding, J. S., . . . Liu, A. J. 2017. Mechanical and barrier properties of maize starch - gelatin composite films: effects of amylose content. Journal of the Science of Food and Agriculture, 97(11): 3613-3622.

Wang, L. Z., Liu, L., Holmes, J., Kerry, J. F., & Kerry, J. P. 2007. Assessment of film-forming potential and properties of protein and polysaccharide-based biopolymer films. International Journal of Food Science & Technology, 42(9): 1128-1138.

Wang, W., Wang, K., Xiao, J., Liu, Y., Zhao, Y., & Liu, A. 2017. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration. International Journal of Biological Macromolecules, 94: 258-265.

Xu, Y. X., Kim, K. M., Hanna, M. A., & Nag, D. 2005. Chitosan-starch composite film: preparation and characterization. Industrial Crops and Products, 21(2): 185-192.

Zamudio-Flores, P. B., Ochoa-Reyes, E., Ornelas-Paz, J. D. J., Aparicio-Saguilán, A., Vargas-Torres, A., Bello-Pérez, L. A., . . . Cárdenas-Félix, R. G. 2015. Effect of storage time on physicochemical and textural properties of sausages covered with oxidized banana starch film with and without betalains. CyTA - Journal of Food, 13(3): 456-463.

Publicado

2022-10-17

Cómo citar

Pérez-Marroquin, X. A., Vargas-Torres, A., Campos-Montiel, R. G., Callejas-Quijada, G., Campos-Lozada, G., León-López, A., & Aguirre-Alvarez, G. (2022). Desarrollo de un biomaterial a base de mezcla almidón-gelatina: Propiedades físicas, mecánicas y de barrera. Biotecnia, 24(3), 107–114. https://doi.org/10.18633/biotecnia.v24i3.1682

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a