Identificación de compuestos bioactivos y características fisicoquímicas de la harina de cladodios de Nopalea cochenillifera (L.) Salm-Dyck


  • Héctor Enrique Fabela-Illescas Universidad Autónoma del Estado de Hidalgo
  • Marisol Patricia Castro-Mendoza Universidad Autónoma del Estado de Hidalgo
  • Efigenia Montalvo-González TecNM-Instituto Tecnológico de Tepic
  • Luis Miguel Anaya-Esparza TecNM-Instituto Tecnológico de Tepic
  • Apolonio Vargas-Torres Universidad Autónoma del Estado de Hidalgo
  • Gabriel Betanzos-Cabrera Universidad Autónoma del Estado de Hidalgo
  • Juan Pablo Hernandez-Uribe Universidad Autonoma del Estado de Hidalgo


Palabras clave:

Nopalea cochenillifera (L.) Salm-Dyck, Capacidad antioxidante, fibra dietética, Compuestos bioactivos, Caracterización fisicoquímica


Nopalea cochenillifera (L.) Salm-Dyck es un nopal poco estudiado, su caracterización contribuye a identificar los compuestos bioactivos y las propiedades funcionales que posee, esto permitirá, generar información sobre potenciales usos y aplicaciones. El objetivo del trabajo fue caracterizar fisicoquímicamente la harina de cladodios de N. cochenillifera e identificar los compuestos bioactivos que contiene. En general, la harina de N. cochenillifera tiene bajas calorías (337%) con alto contenido de fibra dietética (18.41%). Además, exhibe buena capacidad de absorción de agua (11.04%) y aceite (2.05%), mientras que la capacidad de hinchamiento fue de 25 mL/g base seca (bs). El contenido de fenoles solubles y polifenoles hidrolizables fueron 207.92 y 647.99 mg EAG/100 g bs respectivamente. Además, de presentar actividad antioxidante por DPPH (15.28 mmol TE/g bs), FRAP (20.97 mmol TE/g bs) y ABTS•+ (51.31 mmol TE/g bs), se identificaron cinco ácidos fenólicos. De acuerdo con los resultados, la harina de N. cochenillifera es una fuente importante de fibra y compuestos bioactivos con propiedades funcionales. En este contexto, podría ser utilizada como ingrediente funcional en la formulación de otros alimentos. Sin embargo, son necesarios futuros estudios sobre la vida útil de la harina, así como la optimización de su proceso de conservación, transformación y potencial funcional.



Ahmad, M., Wani, T. A., Wani, S. M., Masoodi, F. A. and Gani, A. 2016. Incorporation of carrot pomace powder in wheat flour: effect on flour, dough and cookie characteristics. Journal of Food Science and Technology. 53: 3715-3724.

Anderson, R., Conway, H., Pfeifer, V. and Griffin, E. 1969. Roll and extrusion-cooking of grain sorghum grits. Cereal Science Today. 14: 372-376.

AOAC 2012. Official Methods of Analysis, Methods 925.10; 920.87; 920.85 and 923.03, Gaithersburg, MD, U.S.A., AOAC International.

Astello-García, M. G., Cervantes, I., Nair, V., Santos-Díaz, M. D. S., Reyes-Agüero, A., Guéraud, F., Negre-Salvayre, A., Rossignol, M., Cisneros-Zevallos, L. and Barba De La Rosa, A. P. 2015. Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. Journal of Food Composition and Analysis. 43: 119-130.

Ayadi, M., Abdelmaksoud, W., Ennouri, M. and Attia, H. 2009. Cladodes from Opuntia ficus indica as a source of dietary fiber: Effect on dough characteristics and cake making. Industrial Crops and Products. 30: 40-47.

Bchir, B., Rabetafika, H. N., Paquot, M. and Blecker, C. 2014. Effect of pear, apple and date fibres from cooked fruit by-products on dough performance and bread quality. Food and Bioprocess Technology. 7: 1114-1127.

Beccaro, G. L., Bonvegna, L., Donno, D., Mellano, M. G., Cerutti, A. K., Nieddu, G., Chessa, I. and Bounous, G. 2015. Opuntia spp. biodiversity conservation and utilization on the Cape Verde Islands. Genetic resources and crop evolution. 62: 21-33.

Benzie, I. F. and Strain, J. J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry. 239: 70-76.

Chung, K. T., Wong, T. Y., Wei, C. I., Huang, Y. W. and Lin, Y. 1998. Tannins and human health: a review. Critical Reviews in Food Science and Nutrition. 38: 421-64.

Codex, A. 2017. Codex Standard for Nopal Codex Stan 185-1993. In: Organization, F. A. A. O. O. T. U. N. W. H. (ed.) Tropical Fresh Fruits and Vegetables. first ed. Rome, Italy

Diaz, M. D. S. S., De La Rosa, A.-P. B., Héliès-Toussaint, C., Guéraud, F. and Nègre-Salvayre, A. 2017. Opuntia spp.: characterization and benefits in chronic diseases. Oxidative Medicine and Cellular Longevity. 2017:8634249

El-Mostafa, K., El Kharrassi, Y., Badreddine, A., Andreoletti, P., Vamecq, J., El Kebbaj, M., Latruffe, N., Lizard, G., Nasser, B. and Cherkaoui-Malki, M. 2014. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules. 19: 14879-14901.

Englyst, H. N. and Cummings, J. H. 1988. Improved method for measurement of dietary fiber as non-starch polysaccharides in plant foods. Journal of the Association of Official Analytical Chemists. 71: 808-814.

Fiedor, J. and Burda, K. 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 6: 466-488.

Figueroa-Perez, M. G., Perez-Ramirez, I. F., Paredes-Lopez, O., Mondragon-Jacobo, C. and Reynoso-Camacho, R. 2018. Phytochemical composition and in vitro analysis of nopal (O. ficus-indica) cladodes at different stages of maturity. International Journal of Food Properties. 21: 1728-1742.

Gallegos-Infante, J.-A., Rocha-Guzman, N.-E., González-Laredo, R.-F., Reynoso-Camacho, R., Medina-Torres, L. and Cervantes-Cardozo, V. 2009. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica). International Journal of Food Sciences and Nutrition. 60: 80-87.

Guevara-Figueroa, T., Jimenez-Islas, H., Reyes-Escogido, M. L., Mortensen, A. G., Laursen, B. B., Lin, L.-W., De Leon-Rodriguez, A., Fomsgaard, I. S. and De La Rosa, A. P. B. 2010. Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.). Journal of Food Composition and Analysis. 23: 525-532.

Hartzfeld, P. W., Forkner, R., Hunter, M. D. and Hagerman, A. E. 2002. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. Journal of Agricultural and Food Chemistry. 50: 1785-1790.

Holscher, H. D. 2017. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut microbes. 8: 172-184.

Inglese, P., Mondragon, C., Nefzaoui, A., Saenz, C., Taguchi, M., Makkar, H. and Louhaichi.Mounir 7/10/2018. Ecologia del cultivo, manejo y usos del nopal, Rome Italy, Food and Agriculture Organization of the United Nations (FAO).

Jaramillo-Flores, M. E., Gonzalez-Cruz, L., Cornejo-Mazon, M., Dorantes-Alvarez, L., Gutierrez-López, G. F. and Hernandez-Sanchez, H. 2003. Effect of Thermal Treatment on the Antioxidant Activity and Content of Carotenoids and Phenolic Compounds of Cactus Pear Cladodes (Opuntia ficus-indica). Food Science and Technology International. 9: 271-278.

Jiménez, V. M., Gruschwitz, M., Schweiggert, R. M., Carle, R. and Esquivel, P. 2014. Identification of phenolic compounds in soursop (Annona muricata) pulp by high-performance liquid chromatography with diode array and electrospray ionization mass spectrometric detection. Food Research International. 65: 42-46.

Jun, H.-I., Cha, M.-N., Yang, E.-I., Choi, D. G. and Kim, Y.-S. 2013. Physicochemical properties and antioxidant activity of Korean cactus (Opuntia humifusa) cladodes. Horticulture, Environment, and Biotechnology. 54: 288-295.

Kahkeshani, N., Farzaei, F., Fotouhi, M., Alavi, S. S., Bahramsoltani, R., Naseri, R., Momtaz, S., Abbasabadi, Z., Rahimi, R., Farzaei, M. H. and Bishayee, A. 2019. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian Journal of Basic Medical Sciences. 22: 225-237.

Kaur, M. and Singh, N. 2005. Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food chemistry. 91: 403-411.

Kavitha, S. and Parimalavalli, R. 2014. Effect of processing methods on proximate composition of cereal and legume flours. Journal of Human Nutrition and Food Science. 2: 1051.

Kolniak-Ostek, J., Kita, A., Miedzianka, J., Andreu-Coll, L., Legua, P. and Hernandez, F. 2020. Characterization of Bioactive Compounds of Opuntia ficus-indica (L.) Mill. Seeds from Spanish Cultivars. 25: 5734.

Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S. and Cosic, V. 2001. Method for the measurement of antioxidant activity in human fluids. Journal of clinical pathology. 54: 356-361.

Lim, T. K. 2012. Edible medicinal and non-medicinal plants, Springer.

Mañas, E. and Saura-Calixto, F. 1995. Dietary fibre analysis: methodological error sources. European Journal of Clinical Nutrition. 49: S158-S162.

Mata, A., Ferreira, J. P., Semedo, C., Serra, T., Duarte, C. M. M. and Bronze, M. R. 2016. Contribution to the characterization of Opuntia spp. juices by LC–DAD–ESI-MS/MS. Food Chemistry. 210: 558-565.

Mcrorie Jr, J. W. and Mckeown, N. M. 2017. Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. Journal of the Academy of Nutrition and Dietetics. 117: 251-264.

Medina-Torres, L., Vernon-Carter, E. J., Gallegos-Infante, J. A., Rocha-Guzman, N. E., Herrera-Valencia, E. E., Calderas, F. and Jimenez-Alvarado, R. 2011. Study of the antioxidant properties of extracts obtained from nopal cactus (Opuntia ficus-indica) cladodes after convective drying. Journal of the Science of Food and Agriculture 91: 1001-5.

Missaoui, M., D’antuono, I., D’imperio, M., Linsalata, V., Boukhchina, S., Logrieco, A. F. and Cardinali, A. 2020. Characterization of Micronutrients, Bioaccessibility and Antioxidant Activity of Prickly Pear Cladodes as Functional Ingredient. Molecules. 25: 2176.

Montreau, F. 1972. Sur le dosage des composés phénoliques totaux dans les vins par la méthode Folin-Ciocalteu. OENO One. 6: 397-404.

Moussa-Ayoub, T. E., Abd El-Hady, E.-S. A., Omran, H. T., El-Samahy, S. K., Kroh, L. W. and Rohn, S. 2014. Influence of cultivar and origin on the flavonol profile of fruits and cladodes from cactus Opuntia ficus-indica. Food Research International. 64: 864-872.

Nabil, B., Ouaabou, R., Ouhammou, M., Essaadouni, L. and Mahrouz, M. 2020. Functional Properties, Antioxidant Activity, and Organoleptic Quality of Novel Biscuit Produced by Moroccan Cladode Flour “Opuntia ficus-indica”. Journal of Food Quality. 2020: 3542398.

Necchi, R. M., Alves, I. A., Alves, S. H. and Manfron, M. P. 2012. In vitro antimicrobial activity, total polyphenols and flavonoids contents of Nopalea cochenillifera (L.) Salm-Dyck (Cactaceae). Research in Pharmacy. 2(3): 01-07.

Nuñez-Lopez, M. A., Paredes-Lopez, O. and Reynoso-Camacho, R. 2013. Functional and hypoglycemic properties of nopal cladodes (O. ficus-indica) at different maturity stages using in vitro and in vivo tests. Journal of Agricultural and Food Chemistry. 61: 10981-10986.

Ong, K. W., Hsu, A. and Tan, B. K. 2012. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PLoS One. 7: e32718.

Ortega, V. G., Ramírez, J. A., Velázquez, G., Tovar, B., Mata, M. and Montalvo, E. 2013. Effect of high hydrostatic pressure on antioxidant content of'Ataulfo'mango during postharvest maturation. Food Science and Technology. 33: 561-568.

Perez-Jiménez, J., Arranz, S., Tabernero, M., Díaz- Rubio, M. E., Serrano, J., Goñi, I. and Saura-Calixto, F. 2008. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Research International. 41: 274-285.

Pertuzatti, P. B., Barcia, M. T., Rodrigues, D., Da Cruz, P. N., Hermosín-Gutiérrez, I., Smith, R. and Godoy, H. T. 2014. Antioxidant activity of hydrophilic and lipophilic extracts of Brazilian blueberries. Food Chemistry. 164: 81-88.

Prior, R. L., Wu, X. and Schaich, K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry. 53: 4290-4302.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26: 1231-1237.

Reed, J. D., Mcdowell, R. T., Van Soest, P. J. and Horvath, P. R. 1982. Condensed tannins: a factor limiting the use of cassava forage. Journal of the Science of Food and Agriculture. 33: 213-220.

Remes-Troche, J. M., Taboada-Liceaga, H., Gill, S., Amieva-Balmori, M., Rossi, M., Hernández-Ramírez, G., García-Mazcorro, J. F. and Whelan, K. 2021. Nopal fiber (Opuntia ficus-indica) improves symptoms in irritable bowel syndrome in the short term: a randomized controlled trial. Neurogastroenterology & Motility. 33: e13986.

Reyes-Agüero, J. A. and Aguirre-Rivera, J. R. 2016. Description of the fruit of Nopalea cochenillifera (L.) Salm-Dyck sold in the traditional market of Rioverde, San Luis Potosí, Mexico. Haseltonia. 2016: 43-45.

Rios-Hoyo, A., Romo-Araiza, A., Meneses-Mayo, M. and Guttiérrez-Salmeán, G. 2017. Prehispanic functional foods and nutraceuticals in the treatment of dyslipidemia associated to cardiovascular disease: A mini-review. International Journal for Vitamin and Nutrition Research. 87: 58-98.

Robertson, J. A., De Monredon, F. D., Dysseler, P., Guillon, F., Amado, R. and Thibault, J.-F. 2000. Hydration properties of dietary fibre and resistant starch: a European collaborative study. LWT-Food Science and Technology. 33: 72-79.

Rodriguez-Garcia, M., De Lira, C., Hernandez-Becerra, E., Cornejo-Villegas, M., Palacios-Fonseca, A., Rojas-Molina, I., Reynoso, R., Quintero, L., Del-Real, A. and Zepeda, T. 2007. Physicochemical characterization of nopal pads (Opuntia ficus indica) and dry vacuum nopal powders as a function of the maturation. Plant Foods for Human Nutrition. 62: 107-112.

Saenz, C. 2000. Processing technologies: an alternative for cactus pear (Opuntia spp.) fruits and cladodes. Journal of Arid Environments. 46: 209-225.

Saenz, C. Opuntia spp. Bioactive compounds in foods: a plus for health. 2006. International Society for Horticultural Science (ISHS), Leuven, Belgium, 231-240.

Saenz, C. and Berger, H. 2006. Utilización agroindustrial del nopal, Food & Agriculture Org.

Saenz, C., Sepúlveda, E., Pak, N. and Lecaros, M. 2010. Chemical and physical characterization of cactus cladode (Opuntia ficus-indica) powder. Italian Journal of Food Science. 22: 416.

Sanchez-Tapia, M., Aguilar-López, M., Pérez-Cruz, C., Pichardo-Ontiveros, E., Wang, M., Donovan, S. M., Tovar, A. R. and Torres, N. 2017. Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet. Scientific Reports. 7: 1-16.

Scheinvar, L. 2004. Flora cactológica del estado de Querétaro: diversidad y riqueza.

Stintzing, F. C. and Carle, R. 2005. Cactus stems (Opuntia spp.): A review on their chemistry, technology, and uses. Molecular Nutrition & Food Research. 49: 175-194.

Ventura‐Aguilar, R. I., Bosquez‐Molina, E., Bautista‐Baños, S. and Rivera‐Cabrera, F. 2017. Cactus stem (Opuntia ficus‐indica Mill): anatomy, physiology and chemical composition with emphasis on its biofunctional properties. Journal of the Science of Food and Agriculture. 97: 5065-5073.

Weickert, M. O. and Pfeiffer, A. F. 2018. Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. The Journal of Nutrition. 148: 7-12.

Young, J. E., Zhao, X., Carey, E. E., Welti, R., Yang, S. S. and Wang, W. 2005. Phytochemical phenolics in organically grown vegetables. Molecular Nutrition & Food Research. 49: 1136-1142.