Efecto de inoculantes microbianos en los compuestos bioactivos y actividad antioxidante del chile xcat´ik (Capsicum annuum L.)

Autores/as

  • Mario Sánchez Centro de Investigación en Materiales Avanzados
  • Esaú Ruíz Instituto Tecnológico de Conkal https://orcid.org/0000-0003-0245-3305
  • David Muñoz Facultad de Ingeniería química, Universidad Autónoma de Yucatán
  • Wilberth Chan Facultad de Ciencias Biológicas y Agrícolas, Universidad de Colima https://orcid.org/0000-0001-8634-3618
  • Kati Medina Instituto Tecnológico de Conkal

DOI:

https://doi.org/10.18633/biotecnia.v24i3.1691

Palabras clave:

actividad antioxidante, carotenoides, Capsicum annuum, inoculantes microbianos, agricultura sustentable

Resumen

El chile xcat´ik (Capsicum annuum L.), originario de la península de Yucatán tiene propiedades organolépticas únicas. Pero, la calidad nutracéutica ha sido poco explorada y solamente escasos estudios han buscado mejorar el rendimiento productivo de la planta. La especie Capsicum es considerada un alimento importante debido al contenido de compuestos bioactivos, que promueven efectos beneficiosos a la salud. El uso de inoculantes microbianos son una alternativa para incrementar su rendimiento, mejorar la calidad de los frutos y disminuir el uso de los fertilizantes químicos. En este trabajo se evaluó el efecto de un consorcio microbiano, así como de Bacillus subtilis y Trichoderma harzanium sobre los contenidos de ácido ascórbico, fenoles totales, flavonoides, clorofilas, carotenoides, capacidad antioxidante y capsaicinoides, en el fruto del chile xcat´ik. Los resultados fueron comparados con un control sin inocular. Las inoculaciones con T. harzanium y con B. subtilis incrementaron el contenido de carotenoides, así como la actividad antioxidante por ABTS+, mientras el consorcio microbiano incrementó la actividad antioxidante por DPPH•. De acuerdo a nuestros resultados, los inoculantes evaluados podrían sustituir a los fertilizantes químicos, debido a que igualan o mejoran la calidad nutracéutica del fruto del chile x´catik, con la ventaja de un menor daño al medio ambiente.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Mario Sánchez, Centro de Investigación en Materiales Avanzados

Dr. en Ciencias Químicas, experto en modelado molecular, estudio de la capacidad antioxidante en estructuras biológicas, mecanismos de reacción con estructuras orgánicas, inorganicas y organometálicas.

Esaú Ruíz , Instituto Tecnológico de Conkal

Profesor investigador del Tecnológico Nacional de México, campus Conkal, Yucatán, experto en el uso de agentes biorracionales en el manejo de plagas en cultivos tropicales, agricultura sostenible y uso de inoculantes microbianos en cultivos hortícolas.

David Muñoz, Facultad de Ingeniería química, Universidad Autónoma de Yucatán

Dr. en química analítica, experto en procedimientos analíticos para la determinación de especies químicas en muestras complejas.

Wilberth Chan, Facultad de Ciencias Biológicas y Agrícolas, Universidad de Colima

Profesor-investigador de la Universidad de Colima, experto en Ciencias agronómicas, protección de cultivos, manejo integral de plagas, ecología y ciencia del suelo.

Kati Medina, Instituto Tecnológico de Conkal

Dra. en química analítica, experta en técnicas de determinación analítica, estudio de compuestos antioxidantes en hortalizas y frutos, determinación de plaguicidas en muestras complejas.

Citas

Arimboor, R., Natarajan, R.B., Ramakrishna-Menon, K., Chandrasekar, L.K., Moorkoth, V. 2014. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability- a review. J Food Sci. Tecnol. 52: 1258-1271.

Baslam, M., Garmendia, I., Goicoechea N. 2011. Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J. Agric. Food Chem. 59: 5504–5515.

Calvo, P., Nelson, L., Kloepper, J.W. 2014. Agricultural uses of plant bio stimulants. Plant Soil. 383: 3–41.

Chandrasekaran, M., Chun, S.C., Oh J.W., Paramasivan M., Saini, R.K., Sahayarayan, J.J. 2019. Bacillus subtilis CBR05 for tomato (Solanum lycopersicum) fruits in South Korea as a Novel Plant Probiotic Bacterium (PPB): implications from total phenolics, flavonoids, and carotenoids content for fruit quality. Agronomy. 9: 1–11.

Chang, C.C., Yang, M.H., Wen, H.M., Chern, J.C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 10: 178–182.

Chatterjee, R., Koner, S., Datta, S. 2019. Impact of Microbial Inoculants on the Performance of Bell Pepper (Capsicum annuum L.) Varieties under Foot Hills of Eastern Himalayan Region. Int. J Curr. Microbiol. Appl. 5: 131–138.

Cisneros-Pineda, O., Torres-Tapia, L.W., Gutiérrez-Pacheco, L.C., Contreras-Martín, F., Gonzáles-Estrada, T., Peraza-Sánchez, S. 2007. Capsaicinoids cuantification in pepper peppers cultivated in the state of Yucatán México. Food Chem. 104: 1755-1760.

Cisternas-Jamet, J.R. Salvatierra-Martínez., A. Vega-Gálvez., A. Stolld., Uribe, E., Goñih, M.G. 2020. Biochemical composition as a function of fruit maturity stage of bell pepper (Capsicum annuum) inoculated with Bacillus amyloliquefaciens. Sci. Hortic-Amsterdam, 263: 1–9.

Collins, D.M., Wasmund, M.L.M., Osland, P.W.B. 1995. Improved method for quantifying capsaicinoids in Capsicum using high performance liquid chromatography. Hortscience, 30: 137–139.

Coppeta, A., Bardi, L., Bertolone, E., Berta, G. 2014. Fruit production and quality of tomato plants (Solanum lycopersicum L.) are affected by green compost and arbuscular mycorrhizal fungi. Plant Byosist, 1: 106–115.

Cruz, A.F. 2016. Effect of light-emitting diodes on arbuscular mycorrhizal fungi associated with bahiagrass (Paspalum notatum Flügge) and millet [Pennisetum glaucum (L.) R. Br]. Bioagro, 28: 163–170.

Debnath, S., Rawat, D., Kumar-Mukherjee, A., Adhikary, S., Kundu, R. 2019. Applications and Constraints of Plant Beneficial Microorganism in Agriculture. Mahyar-Mirmajlessi S., Radhakrishnan R (eds.) Biostimulants in Plants Science. IntechOpen, p. 2–25.

Dürüst, N., Dogan, S., Dürüst, Y. 1997. Ascorbic acid and element contents of food of Trabzon (Turkey). J Agric. Food Chem. 45: 2085–2087.

Esitken, A., Yildiz, H.E., Ercisli, S., Donmez, M.F., Turan, M., Gunes, A. 2010. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic-Amsterdam, 124: 62–66.

Gurung, T., Techawongstein, S., Suriharn, B., Techawongstein, S. 2011. Impact of Environments of the Accumulation of Capsaicinoids in Capsicum spp. Hortscience. 46: 1576–1581.

Hörtensteiner, S., B. Kräutler. 2011. Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta (BBA). Bioenergetics. 1807: 977–988.

Jiménez-Gómez, A., García-Estévez, I., García-Fraile, P., Escribano-Bailón, M.T., Rivas, R. 2020. Increase in phenolic compounds of Coriandrum sativum L. after the application of a Bacillus halotolerans biofertilizer. J Sci. Food Agric. 100: 2742-2749.

Karppinen, K., Zoratti, L., Nguyenquynh, N., Häggman, H., Jaakola, L. 2016. On the Developmental and Environmental Regulation of Secondary Metabolism in Vaccinium spp. Berries. 7: 1–9.

Khalid, M., Hassani, D., Bilal, M., Asad, F., Huang, D. 2017. Influence of bio-fertilizer containing beneficial fungi and rhizospheric bacteria on health promoting compounds and antioxidant activity of Spinacia oleracea L. Botanical Studies, 58: 1–9.

Kim, H.J., Chen F., Wu, C., Wang, X., Chung, H.Y., Jin, Z. 2004. Evaluation of antioxidant activity of Australian tea tree (Melaleuca alternifolia) oil and its components. Journal of Agricultural and Food Chemistry. 52: 2849–2854.

Lee, K.J., Oh, Y.C., Cho, W.K., Ma, J.Y. 2015. Antioxidant and anti-inflammatory activity determination of one hundred kinds of pure chemical compounds using offline and online screening HPLC assay. Evidence Based Complementary and Alternative Medicine, 2015: 1–13.

Li, J., Zhu, Z., Gerendás, J. 2014. Effects of nitrogen and sulfur on Total phenolics and antioxidant activity in two genotypes of leaf mustard. Journal of Plant Nutrition, 31: 1642–1655.

Lombardi, N., Caira, S., Troise, A.D., Scaloni, A., Vitaglione, P., Vinale, F., Marra, R., Salzano, A.M., Lorito, M., Woo, S.L. 2020. Thrichoderma Applications on Strawberry Plants Modulate the Physiological Processes Positively Affecting Fruit Production and Quality. Front. Microbiol. 11: 1–17.

Mellidou, I., Kanellis, A. 2017. Genetic Control of Ascorbic Acid Biosynthesis and Recycling in Horticultural Crops. Front. Chem. 5: 1–8.

Mena-Violante, H.G., Ocampo-Jiménez, O., Dendooven, L., Martínez-Soto, G., González-Castañeda, J., Davies, Jr. F.T., Olalde-Portugal, V. 2006. Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorriza. 16: 261–267.

Ógata-Gutiérrez, K., Zúñiga-Dávila, D. 2020. Bacteria-Plant interactions: an added value of microbial inoculation. Rev. Peru Biol. 27: 21–25.

Ortega-García, J.G., Montes-Belmont, R., Rodríguez-Monroy, M., Ramírez-Trujillo, J.A., Suárez-Rodríguez, R., Sepúlveda-Jiménez, G. 2015. Effect of Trichoderma asperellum applications and mineral fertilization on growth promotion and the content of phenolic compounds and flavonoids in onions. Sci. Hortic-Amsterdam, 195: 8–16.

Panche, A.N., Diwan, A.E., Chandra, S.R. 2016. Flavonoids: an overview. J Nut. Sci. 5: 1–15.

Park, Y.J., Park, S.Y., Valan-Arasu, M., Al-Dhabi N.A., Ahn, H.G., Kim, J.K., SU Park. 2017. Accumulation of carotenoids and metabolic profiling in different cultivars of tagetes flowers. Molecules, 22: 1–14.

Pascale, A., Vinale, F., Manganiello, G., Nigro, M., Lanzuise, S., Ruocco, M., Marra, R., Lombardi, N., Woo, S.L., Lorito, M. 2017. Trichoderma and its secondary metabolites improve yield and quality of grapes. J Crop Prot. 92: 176–181.

Pylac, M., Oszust, K., Frąc, M. 2019. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev environ. Sci. BioTech. 18: 597–616.

Ramos-Solano, B., García-Villaraco, A., Gutiérrez-Mañero, F.J., Lucas, J.A., Bonilla, A. 2013. Annual changes in bioactive contents and production in field-grown blackberry after inoculation with Pseudomonas fluorescens. Plant Physiol. Biochem. 74: 1-8.

Re, R., Pellegrini, N., Proteggiente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231–1237.

Rodrigues, C.A., Nicácio, A.E., Jardim, I.C.S.F., Visentainer, J.V., & Maldaner, L. 2019. Determination of Phenolic Compounds in Red Sweet Pepper (Capsicum annuum L.) Using a Modified QuEChERS Method and UHPLC-MS/MS Analysis and Its Relation to Antioxidant Activity. J Braz Chem. Soc. 30: 1229–1240.

Rouphael, Y., Collab, G., Grazianic, G., Ritienic, A., Cardarellid, M.A. 2017. Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chem. 234: 10–19.

Russo, V.M., Perkins, V.P. 2010. Yield and nutrient content of bell pepper pods from plants developed from seedlings inoculated, or not, with microorganisms. Hort. Sci. 45: 352–358.

Salveit, M.E. 2017. Synthesis and Metabolism of Phenolic Compounds. Chapter 5. Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd Edition, Edit. Elhadi M Yahia.

Shumskaya, M., Wurtzel, E.T. 2013. The carotenoid biosynthetic pathway: thinking in all dimensions. Plant Sci. 208: 58–63

Silva, L.R., Azevedo, J., Pereira, M.J., Carro, L., Velázquez, E., Peix, A., Valentao, P., Andrade, P.B. 2014. Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium strains. 1. Effect on bioactive compounds, antioxidant activity, and fruit ripeness. J. Agric. Food Chem. 62: 557–564.

Singh, D.P., Singh, V., Gupta, V.K., Shukla, R., Prabha, R., Sarma., BK., Patel, J.S. 2020. Microbial Inoculation in Rice Regulates Antioxidative Reactions and Defense Related Genes to Mitigate Drought Stress. 10: 1–17.

Singleton, V.L., Rossi, J.A Jr. 1965. Colorimetric of total phenolic with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 16: 144-158.

Soltani, A., Weraduwage, S.M., Sharkey, T., Lowry, D. 2019. Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relations ships. BMC Genomics, 20: 1–18.

Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M.S., Ramakrishan, M., Landi, M., Franiti, A., Sharma, A. 2020. Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent. Plants. 9: 2–25.

Tag, H.M., Kelany, O.E., Tantawy, H.M., Fahmy, A.A. 2014. Potential anti-inflammatory effect of lemon and hot pepper extracts on adjuvant-induced arthritis in mice. J Basic Appl. Zoo. 67: 149–157.

Wheeler, G., Ishikawa, T., Pornsaksit, V., Smirnoff, N. 2015. Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. Elife 4: 2104–2105.

Wheeler, G., Ishikawa, T., Pornsaksit, V., Smirnoff, N. 2015. Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. Elife 4: 2104–2105.

Zeb, A., Imran, M. 2019. Carotenoids, pigments, phenolic composition and antioxidant activity of Oxalis corniculata leaves. Food Biosci. 32: 1–9.

Zhao, Y., Zhang, M., Yang, W., Di, H.J., Ma, L., Liu, W., Li, B. 2019. Effects of microbial inoculants on phosphorus and potassium availability, bacterial community composition, and pepper growth in a calcareous soil: a greenhouse study. J Soils Sediments. 19: 3597–3607.

Descargas

Publicado

2022-10-17

Cómo citar

Sánchez, M. ., Ruíz Sánchez, E., Muñoz Rodríguez, D., Chan Cupul, W., & Medina Dzul, K. (2022). Efecto de inoculantes microbianos en los compuestos bioactivos y actividad antioxidante del chile xcat´ik (Capsicum annuum L.). Biotecnia, 24(3), 123–131. https://doi.org/10.18633/biotecnia.v24i3.1691

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a