Análisis del nicho climático de Coryphantha durangensis (Runge ex Schum.) Britton y Rose, 1923 e identificación de zonas potenciales para su conservación ante el cambio climático
DOI:
https://doi.org/10.18633/biotecnia.v24i3.1698Palabras clave:
clima, nicho, conservación, idoneidadResumen
Coryphantha durangensis es una cactácea endémica que habita en México, en el centro del desierto Chihuahuense, y está considerada en la categoría de Protección Especial por la NOM-059-SEMARNAT-2010. Una de las mayores amenazas para esta especie es el cambio climático y pérdida de idoneidad climática para su presencia, en el presente estudio se evaluó el nicho climático de C. durangensis y se modeló la disponibilidad climática de esta especie mediante el algoritmo MaxEnt bajo condiciones del clima actual y futuro. Los resultados muestran una reducción en las zonas geográficas que presentan condiciones climáticamente adecuadas para la presencia de esta especie para el año 2050 y 2070. Sin embargo, se identificaron cuatro sitios que podrían ser propuestos como áreas de conservación para ésta y otras especies que cohabitan en estas zonas.
Descargas
Citas
Anadón, J.D.; Graciá, E.; Botella, F.; Giménez, A.; Fahd, S. and Fritz, U. Individualistic Response to Past Climate Changes: Niche Differentiation Promotes Diverging Quaternary Range Dynamics in the Subspecies of Testudo Graeca. Ecography 2015. 38, 956–966.
Ballesteros-Barrera, C., Aguilar-Romero, O., Zarate-Hernández, R. y Ballesteros-Tapia, L.2017. Distribución geográfica y conservación de nueve especies del género Ferocactus (Cactaceae) en México. Revista Fitotecnia Mexicana [Consultado: 7 de octubre de 2018] Disponible en:<http://www.redalyc.org/articulo.oa?id=61051413005> ISSN 0187-7380.
Baltzer, J.L., Davies, S.J., Noor, N.S.M., Kassim, A.R. y LaFrankie, J.V. 2007. Geographical distributions in tropical trees: Can geographical range predict performance and habitat association in co-occurring tree species? Journal of Biogeography. 34: 1916–1926.
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T.,... y Villalobos, F. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling. 222 (11): 1810-1819.
Botts, E. A., Erasmus, B. F. N. y Alexander, G. J. 2013. Small range size and narrow niche breadth predict range contractions in South African frogs. Global Ecology and Biogeography. 22: 567–576. https://doi.org/10.1111/geb.12027.
Cardoza-Martínez, G. F., Becerra-López, J. L., Esparza-Estrada, C. E., Estrada-Rodríguez, J. L., Czaja, A., Ehsan, M.,... y Romero-Méndez, U. 2019. Shifts in climatic niche occupation in Astrophytum coahuilense (H. Möller) Kayser and its potential distribution in Mexico. Sustainability. 11 (4): 1138.
Becerra-López, J. L., Ramírez-Bautista, A., Romero-Méndez, U., Pavón, N. P., y Sánchez-Rojas, G. 2017. Effect of climate change on halophytic grasslands loss and its impact in the viability of Gopherus flavomarginatus. Nature Conservation. 21: 39.
Becerra-López, J. L., Rosales-Serna, R., Ehsan, M., Becerra-López, J. S., Czaja, A., Estrada-Rodríguez, J. L.,... y Domínguez-Martínez, P. A. (2020). Climatic Change and Habitat Availability for Three Sotol Species in México: A Vision towards Their Sustainable Use. Sustainability, 12(8), 3455.
Boyles, J. G. y Storm, J. J. 2007. The perils of picky eating: dietary breadth is related to extinction risk in insectivorous bats. PLoS ONE. 2: e672. https://doi.org/10.1371/journal.pone.0000672.
Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.J., Randin, C., Zimmermann, N.E., Graham, C.H. y Guisan, A. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography. 21: 481-497.
Broennimann, O.; Petitpierre, B.; Randin, C.; Engler, R.; Di Cola, V.; Breiner, F.; D’Amen, M.; Pellissier, L.; Pottier, J.; Pio, D.; et al. Ecospat: Spatial Ecology: Miscellaneous Methods. R Package Version 1.1/2015. Available online: http://CRAN.R-project.org/package=ecospat (accessed on 30 November 2018).
Brown, J.H. 1984. On the relationship between abundance and distribution of species. The american naturalist.124: 255–279.
Cooper, J.C. y Soberón, J.2018. Creating individual accessible area hypotheses improves stacked species distribution model performance. Global Ecology and Biogeography. 27: 156–165. DOI: 10.1111/geb.12678.
Cuervo-Robayo, A. P., Escobar, L.E., Osorio-Olvera, L. A., Nori, J.,Varela, S., Martinez-Meyer, E., Velasquez-Tibata, J., Rodríguez-Soto, C., Munguia, M., Castaneda-Alvarez, N.P., Lira-Noriega, A., Soley-Guardia, M., Serra-Diaz, J.M. y Townsend Peterson, A. 2017. Introducción a los Análisis Espaciales con Énfasis en Modelos de Nicho Ecológico. Biodiversity Informatics. ISSN 15469735. [Consultado: 23 de mayo 2018] Available at: <https://journals.ku.edu/jbi/article/view/6507/6016>.DOI:https://doi.org/10.17161/bi.v12i0.6507.
DOF, Diario Oficial de la Federación. 2019. MODIFICACIÓN del Anexo Normativo III, Lista de especies en riesgo de la Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo, publicada el 30 de diciembre de 2010.
Duddik, M., Phillips, S.J. y Schapire, R.E. 2004. Performance Guarantees for Regularized Maximum Entropy Density Estimation. Appearing in Proceedings of the 17th Annual Conference on Computational Learning Theory. Berlin.
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. y Yates, C. J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions. 17 (1): 43-57.
Evans, M. R., V. Grimm, K., Johst, T., Knuuttila, R., de Langhe, C. M., Lessells, M., Merz, M. A., O’Malley, S. H., Orzack, M., Weisberg, D. J., Wilkinson, O., Wolkenhauer, T. G. y Benton, T. G. 2013. Do simple models lead to generality in ecology? Trends in Ecology & Evolution. 28: 578–583.
Fick, S.E. and R.J. Hijmans. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology. 37 (12): 4302-4315.
Guizado-Rodriguez, M. A., Ballesteros-Barrera, C., Casas-Andreu, G., Barradas-Miranda, V.L, Tellez-Valdes, O. y Salgado-Ugarte, I.H. 2012. The impact of global warming on the range distribution of different climatic groups of Aspidoscelis costata costata. Zoological Science. 29 (12): 934-843.
Gutiérrez I. y Trejo, E. 2014. Efecto del cambio climático en la distribución potencial de cinco especies arbóreas de bosque templado en México. Revista Mexicana de Biodiversidad. 85: 179–188. https://doi.org/10.7550/rmb.37737
Grinnell, J. 1917. The niche-relationships of the California Thrasher. The Auk, 34(4), 427-433.
Hernández‐Lambraño, R. E., González‐Moreno, P. y Sánchez‐Agudo, J. Á. 2017. Towards the top: niche expansion of Taraxacum officinale and Ulex europaeus in mountain regions of South America. Austral Ecology. 42 (5): 577-589.
https://www.dof.gob.mx/nota_detalle.php?codigo=5578808&fecha=14/11/2019
Johnson, C. 1998. Species extinction and the relationship between distribution and abundance. Nature. 394: 272–274.
Kass, J. M., Vilela, B., Aiello-Lammens, M. E., Muscarella, R., Merow, C. y Anderson, R. P. 2018.Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods in Ecology and Evolution. 9 (4): 1151–1156. doi:10.1111/2041-210x.12945.
Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L. y Hannah, L. E. E. 2006. Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology. 20 (2): 538-548.
Munday, P. L. 2004. Habitat loss, resource specialization, and extinction on coral reefs. Global Change Biology. 10: 1642–1647. https://doi.org/10.1111/j.1365-2486.2004.00839.x.
Olden, J. D., Lawler, J. J. y Poff, N.L. 2008. Machine learning methods without tears: A primer for ecologists.The Quarterly Review of Biology . 83: 171–193.
Osorio-Olvera L., Barve, V., Barve, N. y Soberón, J. 2016. Nichetoolbox: From getting biodiversity data to evaluating species distribution models in a friendly GUI environment. R package version 0.1.6.0. https://github.com/luismurao/nichetoolbox.
Ozinga, W. A., Colles, A., Bartish, I. V., Hennion, F., Hennekens, S. M., Pavoine, S., Poschlod, P., Hermant, M., Schaminée, J. H. J. y Prinzing, A. 2013. Specialists leave fewer descendants within a region than generalists. Global Ecology and Biogeography. 22: 213–222. https://doi.org/10.1111/j.1466-8238.2012.00792.x.
Pearson, R., Raxworthy C. J., Nakamura M. y Peterson A. T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography. 34: 102-117. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2699.2006.01594.x/full.
Peterson, A. T., Soberón, J., PearsoN, R. G., Anderson, R. P., Martínez-MeyeR, E., Nakamura, M, y Araújo, M. B. 2011. Ecological niches and geographic distributions. Princeton: Princeton University Press.
Phillips, S. J. 2005. A brief tutorial on MaxEnt. AT y T Research. 190 (4): 231-259.
PNUD (Programa de las Naciones Unidas para el desarrollo). 2017. Modelación de la distribución potencial actual y futura de las especies invasoras de mayor riesgo para México. Elaborado en el marco del proyecto GEF-PNUD 089333 “Aumentar las capacidades de México para manejar especies exóticas invasoras a través de la implementación de la Estrategia Nacional de Especies Invasoras”. Martínez-Meyer, E., A.P. Cuervo-Robayo, G.A. Ortíz-Haro y L.A. Osorio-Olvera. Instituto de Biología, UNAM.
Ramírez-Ojeda, J.A., Ruiz-Corral, C., Pérez-Mendoza, R., Villavicencio-García, S., Mena M. y Durán-Puga, N. 2014. Impactos del cambio climático en la distribución geográfica de Gossypium hirsutum L. en México. Revista Mexicana de Ciencias Agrícolas.10: 1885-1895.
Rosenstock, N. 2011.Efectos potenciales del cambio climático y la intensificación Agrícola-Forestal sobre la distribución de los anfibios Melanophryniscus sanmartini y Leptodactylus chaquensis en Uruguay. Universidad de la República de Uruguay.
Schoener, T.W. 1970. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology. 51: 408–418.
Seoane, J. y Carrascal, L. M. 2008. Interspecific differences in population trends of Spanish birds are related to habitat and climatic preferences. Global Ecology and Biogeography. 17:111–121. https://doi.org/10.1111/j.1466-8238.2007.00351.x.
Soberón, J. y Nakamura, M. 2009. Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences, 106 (Supplement 2), 19644-19650.
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., ... y Williams, S. E. 2004. Extinction risk from climate change. Nature. 427 (6970): 145-148.
Urbani, F., D’alessandro, P., Biondi, M. 2017. Using Maximum Entropy Modeling (MaxEnt) to predict future trends in the distribution of high altitude endemic insects in response to climate change. Bulletin of Insectology. 70 (2): 189-200.
Warren, D.L. Glor, R.E., Turelli, M. 2008. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution. 62: 2868–2883.
Wiens, J.J. y Graham, C.H. 2005. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics. 36:519–539.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)