Extractos polifenólicos de las hojas de Ilex paraguariensis y Larrea divaricata y su potencial antioxidante y antiCOVID-19

Autores/as

  • Juan C. Contreras-Esquivel Universidad Autónoma de Coahuila
  • Carlos N. Cano-González Universidad Autónoma de Coahuila
  • Juan Ascacio-Valdes Universidad Autónoma de Coahuila
  • Jorge A. Aguirre-Joya Universidad Autónoma de Coahuila
  • David Aguillón-Gutierrez Universidad Autónoma de Coahuila
  • Javier Breccia National University of la Pampa
  • Judith D. Espinoza-Perez Coyotefoods
  • Cristóbal N. Aguilar Universidad Autónoma de Coahuila
  • Cristian Torres León Universidad Autónoma de Coahuila https://orcid.org/0000-0002-1614-5701

DOI:

https://doi.org/10.18633/biotecnia.v25i1.1762

Palabras clave:

COVID-19, phenolic compounds, Ilex paraguariensis

Resumen

Las hojas de yerba mate (Ilex paraguariensis A.St. Hil) y jarilla (Larrea divaricata Cav.) se usan comúnmente como infusión de té en algunos países de América Latina. Este estudio se realizó para evaluar la actividad antioxidante (FRAP, ABTS y DPPH) y el potencial inhibitorio de los extractos de yerba mate y jarilla sobre la proteasa 3CL (Mpro) de coronavirus SARS-COV-2 por enfoque de acoplamiento molecular. Los principales compuestos bioactivos presentes en los extractos de plantas fueron identificados por HPLC-MS. De acuerdo con los resultados, los extractos polifenólicos de yerba mate y jarilla presentaron alta actividad antioxidante en los ensayos DPPH (> 91 %), ABTS (> 90 %) y FRAP (> 47 mg TE/g). Además, los compuestos fenólicos presentes en la yerba mate, quercetina-3-O-rutinósido (rutina) (-9,60 kcal/mol) y ácido 3,4-dicafeoilquínico (-8,20 kcal/mol) han demostrado ser más efectivos (en Mpro) que los medicamentos antivirales remdesivir y ribavirin. Los compuestos rutina y ácido 3,4-dicafeoilquínico tienen alta afinidad e interacción con uno de los residuos catalíticos Cys145 de Mpro. Estos resultados sugieren que las hojas de yerba mate y jarilla podrían potenciar las defensas antioxidantes del organismo y podrían beneficiar la salud.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Agüero, M. B. et al. (2011) ‘Argentinean Andean propolis associated with the medicinal plant Larrea nitida Cav. (Zygophyllaceae). HPLC-MS and GC-MS characterization and antifungal activity’, Food and Chemical Toxicology, 49(9), pp. 1970–1978. doi: 10.1016/j.fct.2011.05.008.

Aguirre-Joya, J. A. et al. (2018) ‘The physicochemical, antifungal and antioxidant properties of a mixed polyphenol based bioactive film’, Heliyon, 4(12), p. e00942. doi: 10.1016/j.heliyon.2018.e00942.

Benzie, I. and Strain, J. (1996) ‘The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power”: The FRAP assay’, Analytical Biochemistry, 239, pp. 70–76.

Borgio, J. et al. (2020) ‘State-of-the-art tools unveil potent drug targets amongst clinically approved drugs to inhibit helicase in SARS-CoV-2’, Archives of Medical Science, 16(2), pp. 508–518. doi: 10.5114/aoms.2020.94567.

Cárdenas-Hernández, E. et al. (2020) ‘Influence of drying and extraction technology on the chemical profile and antioxidant property of mexican mango byproduct’, in Badwaik, S., Aguilar, Cristobal N., and Haghi, A. K. (eds) Food Loss and Waste Reduction: Technical Solutions and Control. Apple Academic Press.

Chen, J. et al. (2020) ‘Protection against COVID-19 injury by qingfei paidu decoction via anti-viral, anti-inflammatory activity and metabolic programming’, Biomedicine and Pharmacotherapy, 129(April), p. 110281. doi: 10.1016/j.biopha.2020.110281.

Colpo, A. C. et al. (2016) ‘Yerba mate (Ilex paraguariensis St. Hill.)-based beverages: How successive extraction influences the extract composition and its capacity to chelate iron and scavenge free radicals’, Food Chemistry, 209, pp. 185–195. doi: 10.1016/j.foodchem.2016.04.059.

Das, S. et al. (2020) ‘An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study’, Journal of Biomolecular Structure and Dynamics, 0(0), pp. 1–11. doi: 10.1080/07391102.2020.1763201.

Ghosh, R. et al. (2020) ‘Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study’, Journal of Biomolecular Structure and Dynamics, 0(0), pp. 1–13. doi: 10.1080/07391102.2020.1779818.

Gimeno, A. et al. (2020) ‘Prediction of novel inhibitors of the main protease (M-pro) of SARS-CoV-2 through consensus docking and drug reposition’, International Journal of Molecular Sciences, 21(11). doi: 10.3390/ijms21113793.

Hung, I. F. et al. (2020) ‘Triple combination of interferon beta-1b , lopinavir – ritonavir , and ribavirin in the treatment of patients admitted to hospital with COVID-19 : an open-label , randomised , phase 2 trial’, The Lancet, 6736(20), pp. 1–10. doi: 10.1016/S0140-6736(20)31042-4.

Jacques, R. A. et al. (2007) ‘The use of ultrasound in the extraction of Ilex paraguariensis leaves: A comparison with maceration’, Ultrasonics Sonochemistry, 14(1), pp. 6–12. doi: 10.1016/j.ultsonch.2005.11.007.

Kneller, D. W. et al. (2020) ‘Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography’, Nature Communications, 11(1), pp. 7–12. doi: 10.1038/s41467-020-16954-7.

Kong, R. et al. (2020a) ‘COVID-19 Docking Server: a meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19’, Bioinformatics, 36(20), pp. 5109–5111. doi: 10.1093/BIOINFORMATICS/BTAA645.

Kong, R. et al. (2020b) COVID-19 Docking Server: An interactive server for docking small molecules, peptides and antibodies against potential targets of COVID-19, arXiv preprint. Available at: http://arxiv.org/abs/2003.00163.

Kulkarni, S. A. et al. (2020) ‘Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein’, Journal of Molecular Structure, 1221, p. 128823. doi: 10.1016/j.molstruc.2020.128823.

Molyneux, P. (2004) ‘The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity’, Songklanakarin J. Sci. Technol, 26(2), pp. 211–219. doi: 10.1016/S0891-5849(98)00315-3.

Mpiana, P. T. et al. (2020) ‘Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study’, Chemical Physics Letters, 754(June), p. 137751. doi: 10.1016/j.cplett.2020.137751.

Newman, D. J. and Cragg, G. M. (2020) ‘Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019’, Journal of Natural Products, 83(3), pp. 770–803. doi: 10.1021/acs.jnatprod.9b01285.

Paraiso, I. L., Revel, J. S. and Stevens, J. F. (2020) ‘Potential use of polyphenols in the battle against COVID-19’, Current Opinion in Food Science. doi: 10.1016/j.cofs.2020.08.004.

Perestrelo, R. et al. (2012) ‘Phenolic profile of Sercial and Tinta Negra Vitis vinifera L . grape skins by HPLC – DAD – ESI-MS n Novel phenolic compounds in Vitis vinifera L . grape’, Food Chemistry, 135(1), pp. 94–104. doi: 10.1016/j.foodchem.2012.04.102.

Re, R. et al. (1999) ‘Antioxidant activity applying an improved ABTS radical cation decolorization assay’, Free radical biology & medicine, 26, pp. 1231–1237.

Schinella, G. R. et al. (2000) ‘Antioxidant Effects of an Aqueous Extract of Ilex paraguariensis’, Biochemical and Biophysical Research Communications, 269(2), pp. 357–360. doi: https://doi.org/10.1006/bbrc.2000.2293.

Singh, A. K. et al. (2020) ‘Remdesivir in COVID-19: A critical review of pharmacology, pre-clinical and clinical studies’, Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(4), pp. 641–648. doi: 10.1016/j.dsx.2020.05.018.

Torres-León, C., Rojas, R., et al. (2017) ‘Extraction of antioxidants from mango seed kernel: Optimization assisted by microwave’, Food and Bioproducts Processing, 105, pp. 188–196. doi: 10.1016/j.fbp.2017.07.005.

Torres-León, C., Ventura-Sobrevilla, J., et al. (2017) ‘Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties’, Journal of Functional Foods, 37, pp. 176–189. doi: 10.1016/j.jff.2017.07.045.

Torres-León, C. et al. (2020) ‘In silico Screening bioaktiver Verbindungen aus mexikanischen Wüstenpflanzen zur Vorhersage potenzieller Inhibitoren von SARS- Coronavirus 2 (SARS-CoV-2)’, Journal of Medicinal and Spice Plants, 2(4), pp. 153–156.

Vargas-Arispuro, I. et al. (2005) ‘Antifungal lignans from the creosotebush (Larrea tridentata)’, Industrial Crops and Products, 22(2), pp. 101–107. doi: 10.1016/j.indcrop.2004.06.003.

Yu, J. wang, Wang, L. and Bao, L. dao (2020) ‘Exploring the active compounds of traditional Mongolian medicine in intervention of novel coronavirus (COVID-19) based on molecular docking method’, Journal of Functional Foods, 71(March), p. 104016. doi: 10.1016/j.jff.2020.104016.

Zapata, F. J. et al. (2019) ‘Caffeine, but not other phytochemicals, in mate tea (Ilex paraguariensis St. Hilaire) attenuates high-fat-high-sucrose-diet-driven lipogenesis and body fat accumulation’, Journal of Functional Foods, (August), p. 103646. doi: 10.1016/j.jff.2019.103646.

Publicado

2022-11-15

Cómo citar

Contreras-Esquivel, J. C., Cano-González, C. N. ., Ascacio-Valdes, J. ., Aguirre-Joya, J. A. ., Aguillón-Gutierrez, D., Breccia, J. ., … Torres León, C. (2022). Extractos polifenólicos de las hojas de Ilex paraguariensis y Larrea divaricata y su potencial antioxidante y antiCOVID-19. Biotecnia, 25(1), 61–66. https://doi.org/10.18633/biotecnia.v25i1.1762

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.