TECNOLOGÍAS DE DESHIDRATACIÓN PARA LA PRESERVACIÓN DE TOMATE (Lycopersicon esculentum Mill.)

  • Emilio Ochoa-Reyes Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Cuauhtémoc.
  • José de Jesús Ornelas-Paz Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Cuauhtémoc.
  • Saúl Ruiz-Cruz Instituto Tecnológico de Sonora, Departamento de Biotecnología y Ciencias Alimentarias.
  • Vrani Ibarra-Junquera Universidad de Colima, Facultad de Ciencias Químicas
  • Jaime D. Pérez-Martínez Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas.
  • Juan Carlos Guevara-Arauza Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas.
  • Cristobal N. Aguilar Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas.

Resumen

La diversidad de usos y sus atributos sensoriales y protectores de la salud humana han posicionado al tomate como uno de los frutos más importantes en la dieta humana. Sin embargo, su corta vida poscosecha en estado fresco ha limitando su distribución. La deshidratación de este fruto ha permitido extender su vida de anaquel, fortaleciendo su demanda. Hoy en día el tomate deshidratado es muy popular en ciertas regiones del mundo. La deshidratación del tomate se lleva a cabo mediante diversos métodos, variando de artesanales a altamente sofisticados a gran escala. La deshidratación permite reducir la actividad acuosa del fruto, reduciendo la susceptibilidad al deterioro, pero induciendo una serie de cambios físicos, químicos y de bioactividad que afectan su aceptabilidad por el consumidor final. La magnitud de estos cambios depende de las condiciones de deshidratación.

Citas

Abdelwahed, W. Degobert, G. Stainmesse, S. y Fessi, H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Advanced Drug Delivery Reviews. 58:1688–1713.

Al-Harahsheh, M., Al-Muhtaseb, H.A., Magee, T.R.A. 2009. Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration. Chemical Engineering and Processing: Process Intensification. 48: 524-531

Alibas, O.I., Akbudak, B. y Akbudak, N. 2007. Microwave drying characteristics of spinach. Journal of Food Engineering, 78(2), 577–583.

Askari, G.R, Emam-Djomeh, Z., Mousavi, S.M. 2008. Investigation of the effects of microwave treatment on the optical properties of apple slices during drying. Drying technology. 26(11):1362-1368

Bala, B.K. 1998. Solar drying systems: simulation and optimization. ed. Agrotech Publishing Academy, India.

Bala, B.K. 2004. Experimental investigation of the performance of the solar tunnel drier for drying jackfruit for production of dried jackfruit and jackfruit leather. Annual research report, Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh, Bangladesh.

Bala, B.K. y Woods, J.L. 1994. Simulation of the indirectnaturalconvectionsolardrying of roughrice. Solar Energy. 53(3):259–266.

Baydar H., Sagdic O., Ozkan, G. y Karadogan, T. 2004. Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food Control, 15:169–172.

Botsoglou, N.A., Grigoropoulou, S.M., Botsoglou, E., Govaris, A. y Papageorgiou, G. 2003. The effects of dietary oregano essential oil and α-tocopheryl acetate on lipid oxidation in raw and cooked turkey during refrigerated storage. Meat Science, 65:1193–1200.

Bovy, A., de Vos, R., Kemper, M., Schijlen, E., Almenar, P.M., Muir, S., Collins, G., Robinson, S., Verhoeyen, M., Hughes, S., Santos-Buelga, C. y Van, T.A. 2002. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell. 14:2509-2526

Camargo, G.A., Grillo, S.L.M., Mieli, J. y Moretti, R.H. 2010. shelf life of pretreated Dried Toamto. Food Bioprocess Technol. 3:826–833

Cárcel, J.A., García-Pérez, J.V., Riera, E. y Mulet, A. 2007.Influence of high intensity ultrasound on drying kinetics of persimmon. Drying Technology. 25:185-193.

Chang, C.H., Lin, H.Y., Chang, C.Y. y Liu, Y.C. 2006.Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering 77(3):478–485.

Chorianopoulos, N., Kalpoutzakis, E., Aligiannis, N., Mitaku, S., Nychas, G. y Haroutounian, S.A. 2004. Essential oils of Satureja, Origanum, and Thymus species: chemical composition and antibacterial activities against foodborne pathogens. Journal of Agricultural and Food Chemistry. 52:8261–8267.

Daferera, D.J., Ziogas, B.N. y Polissiou, M.G. 2003. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. Michiganensis. Crop Protection. 22:39–44.

Demiray, E., Yilmaz, Y., Tulek, Y., 2012. Degradation Kinetics of Lycopene, β-Carotene and Ascorbic Acid in Tomatoes during Hot Air Drying. LWT - Food Science and Technology. 1-5.

Dermesonlouoglou, E.K., Giannakourou, M.C. y Taoukis, P. 2007. Stability of dehydrofrozen tomatoes pretreated with alternative osmotic solutes. Journal of Food Engineering. 78(1):272–280.

Diaz-Maroto, M.C., Gonzalez-Vinas, M.A, Cabezudo, M.D. 2003. Evaluation of the effect of drying on aroma of parsley by free choice profiling. European Food Research and Technology. 216:227–232.

Doymaz, I. 2007. Air-drying characteristics of tomatoes. Journal of Food Engineering 78(4):1291–1297.

El-Aouar, A.A., Azoubel, M.P., Barbosa, L.J. y Murr, X.E.F. 2006. Influence of osmotic agent on the osmotic dehydration of papaya (Carica papaya L.). Journal of Food Engineering 75: 267-274.

Feng, H. 2002. Analysis of microwave assisted fluidized-bed drying of particulate product with a simplified heat and mass transfer model. International Communications in Heat and Mass Transfer, 29, 1021–1028.

Feng, H., Tang, J., Cavalieri, R.P. y Plump, O.A. 2001. Heat and mass transport in microwave drying of porous materials in a spouted bed. American Institute Chemical Engineers Journal. 47(7):1499–1511.

Franks, F. 1998. Freeze-drying of bioproducts: putting principles into practice. European Journal of Pharmaceutics and Biopharmaceutics. 45:221–229.

Goula, A.M. y Adamopoulos, K.G. 2005. Stability of lycopene during spray drying of tomato pulp. LWT-Food Science and Technology 38(5):479-487.

Hawaree, N., Chiewchan, N. y Devahastin, S. 2009. Effects of drying temperature and surface characteristics of vegetable on the survival of Salmonella. Journal of Food Science 74, E16–22.

Hawlader, M.N.A., Uddin, M.S., Ho, J.C. y Teng, A.B.W. 1991. Drying characteristics of tomatoes. Journal of Food Engineering, 14(4): 259-268.

Heredia, A., Barrera, C. y Andrés, A. 2007. Drying of cherry tomato by a combination of different dehydration techniques. Comparison of kinetics and other related properties. Journal of Food Engineering. 80(1):111–118.

Heredia, A., Peinado, I., Rosa, E., Andrés, A. y Escriche, I. 2012. Volatile profile of dehydrated cherry tomato: Influences of osmotic pre-treatment and microwave power. Food Chemistry. 130:889-895.

Huu-Thuan, B., Makhlouf. J. y Ratti, C. 2010 .Postharvest ripening characterization of greenhouse tomatoes. International Journal of Food Properties. 13:830–846.

Janjai, S. y Bala, B.K. 2012. Solar Drying Technology. Food Eng Rev 4:16–54.

Jasso de Rodríguez, D., Rodríguez, G.R., Hernández, C.F.D., Aguilar, G.C.N., Sáenz, G.A., Villarreal, Q.J.A. y Moreno, Z.L.E. 2011. In vitro antifungal activity of extracts of Mexican Chihuahuan Desert plants against postharvest fruit fungi. Industrial Crops and Products, 34:960-966.

Jiokapa. N.Y., Nuadje, G.B., Raoult-Wack, A-L. y Giroux, F. 2001. Déshydratation-imprégnation par immersion de rondelles de mangue (Mangifera indica): influence de la température et de la concentration de la solution sur les cinétiques de certains éléments constitutifs du fruit. Fruits, 56, 169–177.

Kiranoudis, C.T., Maroulis, Z.B., Marinos-Kouris, D. y M. Tsamparlis. 1997. Design of tray dryers for food dehydration. Journal of Food Engineering. 32(3)269-291.

Lavelli, V., Hippeli, S., Peri, C., y Elstner, E. F. 1999. Evaluation of radical scavenging activity of fresh and airdried tomatoes by three model reactions. Journal of Agricultural and Food Chemistry. 47:3826–3831.

Lu, Y., Turley, A., Dong, X. y Wu. C. 2011. Reduction of Salmonella enterica on grape tomatoes using microwave heating. International Journal of Food Microbiology. 145:349–352

Marth, E.H. y J.L. Steel 1998. Applied Dairy Microbiology. Marcel Dekker Inc., New York.

Maskan, M. 2001. Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 177–182.

Mulet, A., Sanjuán, N., Bon. J. y Simal, S. Drying model for highly porous hemispherical bodies. European Food Research and Technology. 210(2):80-83.

Muratore, G., Rizzo, V., Licciardello, F. y Maccarone, E. 2008. Partial dehydration of cherrytomato at different temperature, and nutritionalquality of the products. Food Chemistry, 111(4):887-891.

Murrell, W. y Scott, W. 1966. The heat resistance of bacterial spores at various water activities, Journal of General Microbiology. 43:411– 425.

Nicoliay, M.C., Aneseb, M., Parpinel, M.T., Franceschi, S. y Lericia, C.R. 1997. Loss and/or formation of antioxidants during food processing and storage. Cancer Letters. 114:71-74

Ochoa-Reyes, E. 2011. Prolongacion de vida de anaquel del pimiento morrón empleando un sistema de biopolímero-cera de candelilla. Tesis de maestria. Universidad Autónoma de Coahuila.

Oka, Y., Nacar, S., Putievsky, E., Ravid, U., Yaniv, Z. y Spiegel, Y. 2000. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology, 90:710–715.

Pavela, R. 2005. Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia.76(7-8):691–696.

Petro-Turza, M. 1986. Flavor of tomato and tomato products. Food Review International, 2(3), 309–351

Pikal, M.J., Roy, M.L. y Shah. S. 1984. Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial. Journal of pharmaceutical sciences. 73:1224–1237.

Pokorny, J. y Schmidt, S. 2001. Natural antioxidant functionality during food processing. En Antioxidant in food practical applications. J. Pokorny, N. Yanishlieva, y M. Gordon (ed.), pp. 331–351. Abington, England: Woodhead Publishing.

Pose, G., Patriarca, A., Kyanko, V., Pardo, A. y Fernández, V. P. 2010. Water activity and temperature effects on mycotoxin production by Alternaria alternata on a synthetic tomato medium. International Journal of Food Microbiology. 142:348–353.

Rajkumar, P., Kulanthaisami, S., Raghavan ,G.S.V., Gariépy, R.Y. y Orsat, V. 2007. Drying Kinetics of Tomato Slices in Vacuum Assisted Solar and Open Sun Drying Methods. Drying Technology. 25(7-8):1394-1357.

Raoult-Wack, A.L. 1994. Advances in osmotic dehydration. Trends in Food Science and Technology. 5:255-260.

Ronceros, B.A., Leiva, J.I., Burgos, E.C. y Pardo, L.C. 2008. Effecto de la temperature y tiempo de almacenamiento sobre la calidad del tomate deshidratado. Informacion tecnológica, 19(5):3-10.

Sacilik, k., keskin, R., Elicin, A.K. 2006. Mathematical modeling of solar tunnel drying of thin layer organic tomato. Journal of Food Engineering. 73(3):231–238.

Santos-Sánchez, N.F., Valadez-Blanco, R. Gómez-Gómez, M.S., Pérez-Herrera, A. y Salas-Coronado, R. 2012. Effect of rotating tray drying on antioxidant components, color and rehydration ratio of tomato saladette slices. LWT - Food Science and Technology. 46:298-304

Schiffmann, R. F. 1995. Microwave and dielectric drying. En Handbook of industrial drying. A.S. Mujumdar (Ed.), pp. 345–372. New York: USA.

Sharma, G.P. y Prasad, S. 2001. Drying of garlic (Allium sativum) cloves by microwave-hot air combination. Journal of Food Engineering. 50(2):99-105.

Shi, J.X., LeMaguer, M., Kakuda, Y., Liptay, A. y Niekamp, F. 1999. Lycopene degradation and isomerization in tomato dehydration. Food Research International, 32(1), 15–21.

Singh y Heldman. 2001. Introduction to Food Engineering, 3rd. ed. Academic Press, San Diego, CA.

Tonon, R.V., Baroni, A.F. y Hubinger, M.D. 2007.Osmotic dehydration of tomato in ternary solutions: Influence of process variables on mass transfer kinetics and an evaluation of the retention of carotenoids. Journal of Food Engineering. 82: 509–517.

Toor, R.K. y Savage, G.P. 2006. Effect of semi-drying on the antioxidantcomponents of tomatoes. Food Chemistry. 94(1):90-97.

Tsamo, C.V.P., Bilame, A.F., Ndjouenkeu, R. 2006. Air drying behaviour of fresh and osmotically dehydrated onion slices (Allium cepa) and tomato fruits (Lycopersicon esculentum). International Journal of Food Properties.9(4):877-888

Turner, I.W. y Jolly, P.G. 1991. Combined microwave and convective drying of a porous material. Drying Technology, 9(5):1209–1269.

Unadi, A., Fuller, R.J. y Macmillan, R.H. 2002. Strategies for drying tomatoes in a tunnel dehydrator. Drying Technology, 7:1407-1425.

Yanishlieva-maslarova, N. V. (2001). Inhibiting oxidation. en Antioxidants in foods. J. Pokorny, N. Yanishlieva, y M. Gordon (Ed.), pp22-70. Boca Raton, FL: CRC Press LLC.

Zanoni, B., Peri, C., Nani, R. y Levelli, V. 1998. Oxidative heat damage of tomato halves as affected by drying. Journal of Food Engineering. 31(5):395–401.

Publicado
2013-08-30
Sección
Artículos