Computational fluid dynamics as a technique for the UV-C light dose determination in horticultural products//Dinámica de fluidos computacional como técnica para la determinación de la dosis de luz UV-C en productos hortofruticolas
DOI:
https://doi.org/10.18633/biotecnia.v22i1.1128Palabras clave:
Safety, hormesis, UV-C radiation, simulation, mathematical modelingResumen
Horticultural products disinfection with short wave ultraviolet light (UV-C) depends mainly on dose. This parameter is defined as the product between time and intensity radiation. In general, short doses cause beneficial or hormetic effects, such as decrease of microbial load and fruits and vegetables quality preservation. While UV-C light high doses or long exposure times generate changes in those products, such as enzymatic browning, loss of texture, among others, which cause a decrease in shelf life and functional properties. Therefore, this article presents the most cited techniques to determine doses in horticultural products, some experimental and others that employ microbiology and mathematical knowledge, radiochromic films and computational fluid dynamics (CFD). The review highlights that CFD allow the development of simulations in real environments, quickly and economically, including radiation models prone to experimental validation and help to improve the arrengement of horticultural products in the equipment to achieve a uniform irradiation.
ABSTRACT
La desinfección de productos hortofrutícolas con luz ultravioleta de onda corta (UV-C) depende principalmente de la dosis. Este parámetro se define como el producto entre el tiempo e intensidad de radiación. En general, las dosis cortas ocasionan efectos benéficos u horméticos, tales como la disminución de carga microbiana y preservación de la calidad de las frutas y hortalizas durante su vida útil. Mientras que las dosis altas o los largos tiempos de exposición a la luz UV-C generan cambios en dichos productos, tales como el oscurecimiento enzimático, pérdida de textura, entre otros, los cuales provocan una disminución de la vida útil y la pérdida de las propiedades funcionales. Por lo tanto, este artículo presenta las técnicas más citadas para determinar las dosis en productos hortofrutícolas, algunas de carácter experimental y otras que emplean conocimientos de microbiología y matemáticas, películas radiocrómicas y la dinámica de fluidos computacional (CFD). La revisión destaca que la CFD permite el desarrollo de simulaciones en entornos reales de forma rápida y económica, comprende modelos de radiación que pueden ser validados de forma experimental y ayuda a mejorar la disposición de los productos hortofrutícolas en el equipo para lograr una irradiación más uniforme.
Descargas
Citas
Abdel-Fattah, A.A., El-sayed A.H. and El-Din, H.E. 2000. Thymol-blue dyed poly (vinyl butyral) films for monitoring ultraviolet radiation. Journal of Photochemistry and Photobiology A: Chemistry. 137(1): 37–43.
Alfano, O.M., Romero, R.L. and Cassano, A.E. 1986. Radiation field modelling in photoreactors - I. Homogeneous media. Chemical Engineering Science. 41(3): 421–444.
ANSYS Inc., 5.3.9 Choosing a Radiation Model [accesed on august 14, 2019] 2009. Available at: http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node118.htm
Bachmann, R. 1978. Apparatus for automatic low-bacteria to aseptic filling and packing of foodstuffs. U.S. patent 4,121,107.
Bachmann, R. and Sturm, W. 1979. Method for automatic low-bacteria to aseptic filling and packing of foodstuffs employing ultraviolet radiation. U.S. patent 4,175,140.
Baka, M., Mercier, J., Corcuff, R., Castaigne, F. and Arul, J. 1999. Photochemical treatment to improve storability of fresh strawberries. Journal of Food Science. 64(6): 1068–1072.
Bartzanas, T., Kacira, M., Zhu, H., Karmakar, S., Tamimi, E., Katsoulas, N., Lee, I.-B. and Kittas, C. 2013. Computational fluid dynamics applications to improve crop production systems. Computers and Electronics in Agriculture. 93: 151–167.
Beltrán, A., Ramos, M. and Alvarez, M. 2010. Estudio de la vida útil de fresas (Fragaria vesca) mediante tratamiento con radiación ultravioleta de onda corta (UV-C). Revista Tecnológica ESPOL. 23(2): 17–24.
Butson, E.T., Cheung, T., Peter, K.N. and Butson, M.J. 2010. Measuring solar UV radiation with EBT radiochromic film. Physics in Medicine & Biology. 55(20): N487–N493.
Butson, M.J., Peter, K.N., Cheung, T. and Metcalfe, P. 2003. Radiochromic film for medical radiation dosimetry. Materials Science and Engineering: R: Reports. 41(3-5): 61–120.
Chang, J.C., Ossoff, S.F., Lobe, D.C., Dorfman, M.H., Dumais, C.M., Qualls, R.G. and Johnson, J.D. 1985. UV inactivation of pathogenic and indicator microorganisms. Applied and Environmental Microbiology. 49(6): 1361–1365.
Costa, L., Vicente, A.R., Civello, P.M., Chaves, A.R. and Martínez, G.A. 2006. UV-C treatment delays postharvest senescence in broccoli florets. Postharvest Biology and Technology. 39(2): 204–210.
Devic, S. 2011. Radiochromic film dosimetry: past, present, and future. Physica Medica. 27(3): 122–134.
Gardner, D.W.M. and Shama, G. 1998. The kinetics of Bacillus subtilis spore inactivation on filter paper by uv light and uv light in combination with hydrogen peroxide. Journal of Applied Microbiology. 84(4): 633–641.
Gardner, D.W.M. and Shama, G. 1999. UV intensity measurement and modelling and disinfection performance prediction for irradiation of solid surfaces with UV light. Food and Bioproducts Processing. 77(3): 232-242.
Gardner, D.W.M. and Shama, G. 2000. Modeling UV-induced inactivation of microorganisms on surfaces. Journal of Food Protection. 63(1): 63–70.
Gómez, P.L., Alzamora, S.M., Castro, M.A. and Salvatori, D.M. 2010. Effect of ultraviolet-C light dose on quality of cut-apple: Microorganism, color and compression behavior. Journal of Food Engineering. 98(1): 60–70.
González-Aguilar, G.A., Villegas-Ochoa, M.A., Martínez-Téllez, M.A., Gardea, A.A. and Ayala-Zavala, J.F. 2007. Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. Journal of Food Science. 72(3): S197–S202.
González-Aguilar, G.A., Wang, C.Y., Buta, J.G. and Krizek, D.T. 2001. Use of UV-C irradiation to prevent decay and maintain postharvest quality of ripe ‘tommy atkins’ mangoes. International Journal of Food Science & Technology. 36(7): 767–773.
Gutiérrez, D., Ruiz-López, G., Sgroppo, S. and Rodríguez, S. 2016. Uso de la radiación UV-C en el proceso de elaboración de hortalizas de IV gama. Agrociencia Uruguay. 20(2): 7–13.
Harris, L.J., Zagory, D. and Gorny, J.R. 2011. Factores de seguridad. In: Tecnología Postcosecha de Cultivos Hortofrutícolas. A.A. Kader (ed.), pp. 342-345. Postharvest Technology Research & Information Center, Davis.
Hashemabadi, S., Ghaderzadeh, F. and Taghipour, F. 2014. CFD simulation of UV disinfection reactor for applesauce with a low UV absorption coefficient. Journal of Chemical and Petroleum Engineering. 48(2): 103–116.
He, X., Wang, J., Guo, S., Zhang, J., Wei, B., Sun, J. and Shu, S. 2018. Ventilation optimization of solar greenhouse with removable back walls based on CFD. Computers and Electronics in Agriculture. 149: 16–25.
Ho, C.K. 2008. Implementing the discrete ordinates (DO) radiation model for UV-dose simulations [accesed on february 4, 2019] Available at: https://www.sandia.gov/cfd-water/ files/Fluent_DO_tutorial.doc
Hu, H.H. 2012. Computational fluid dynamics. In: Fluid Mechanics. P. K. Kundu, I. M. Cohen and D. R. Dowling (eds.), pp. 421–472. Academic Press, Waltham.
Huang, H., Ge., Z, Limwachiranon, J., Li, L., Li, W. and Luo, Z. 2017. UV-C treatment affects browning and starch metabolism of minimally processed lily bulb. Postharvest Biology and Technology. 128: 105–111.
Imaizumi, T., Yamauchi, M., Sekiya, M., Shimonishi, Y. and Tanaka, F. 2018. Responses of phytonutrients and tissue condition in persimmon and cucumber to postharvest UV-C irradiation. Postharvest Biology and Technology. 145: 33–40.
Kaushal, P. and Sharma, H.K. 2011. Concept of computational fluid dynamics (CFD) and its applications in food processing equipment design. Journal of Food Processing & Technology. 3(1): 1–7.
Koutchma, T., Forney, L. and Moraru, C. 2009. Ultraviolet light in food technology: principles and applications. 1st ed. CRC Press. Boca Raton.
Lamikanra, O., Kueneman, D., Ukuku, D. and Bett-Garber, K.L. 2006. Effect of processing under ultraviolet light on the shelf life of fresh-cut cantaloupe melon. Journal of Food Science. 70(9): C534–C539.
Liu, J., Stevens, C., Khan, V.A., Lu, J.Y., Wilson, C.L., Adeyeye, O., Kabwe, M.K., Pusey, P.L., Chalutz, E., Sultana, T. and Droby, S. 1993. Application of ultraviolet-c light on storage rots and ripening of tomatoes. Journal of Food Protection. 56(10): 868–872.
Liu, C., Zheng, H., Sheng, K., Liu, W. and Zheng, L. 2018. Effects of postharvest UV-C irradiation on phenolic acids, flavonoids, and key phenylpropanoid pathway genes in tomato fruit. Scientia Horticulturae. 241: 107–114.
Millán-Villarroel, D., Romero-González, L., Brito, M. and Ramos- Villarroel, A.Y. 2015. Luz ultravioleta: inactivación microbiana en frutas. Saber. 27(3): 454–469.
Modest, M.F. 2013. The radiative transfer equation in participating media (RTE). In: Radiative Heat Transfer. M.F. Modest (ed.), pp. 279–302. Academic Press, Amsterdam.
Nigro, F., Ippolito, A. and Lima, G. 1998. Use of UV-C light to reduce Botrytis storage rot of table grapes. Postharvest Biology and Technology. 13(3): 171–181.
Norton, T. and Sun, D.W. 2007. An overview of CFD Applications in the food industry. In: Contemporary Food Engineering. D.W. Sun (ed.), pp. 1–41. CRC Press, Boca Raton.
Obande, M.A. and Shama, G. 2011. The use of biodosimetry to measure the UV-C dose delivered to a sphere, and implications for the commercial treatment of fruit. Journal of Food Engineering. 104(1): 1–5.
Pan, Y.G. and Zu, H. 2012. Effect of UV-C radiation on the quality of fresh-cut pineapples. Procedia Engineering. 37: 113–119.
Park, M.H. and Kim, J.G. 2015. Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biology and Technology. 100: 109–112.
Pinela, J. and Ferreira, I.C.F.R. 2017. Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Critical Reviews in Food Science and Nutrition. 57: 2095–2111.
Pristijono, P., Bowyer, M.C., Papoutsis, K., Scarlett, C.J., Vuong, Q.V., Stathopoulos, C.E. and Golding, J.B. 2019. Improving the storage quality of Tahitian limes (Citrus latifolia) by pre-storage UV-C irradiation. Journal of Food Science and Technology. 56(3): 1438–1444.
Quintero-Cerón, J.P., Bohorquez-Pérez, Y., Valenzuela-Real, C. and Solanilla-Duque, J.F. 2013. Avances en la aplicación de luz ultravioleta de onda corta (UV-C) en frutas y vegetales enteros y mínimamente procesados: revisión. Revista Tumbaga. 1(8): 29–60.
Ren, H.W. and Zhang, Y. 2011. Applications of computational fluid dynamics (CFD) in the food industry. Advanced Materials Research. 236: 2273–2278.
Rivera-Pastrana, D.M., Béjar, A.A.G., Martínez-Téllez, M.Á., Rivera- Domínguez, M., and González-Aguilar, G.A. 2007. Efectos bioquímicos postcosecha de la irradiación UV-C en frutas y hortalizas. Revista Fitotecnia Mexicana. 30(4): 361–372.
Sandia National Laboratories. 2007. UV disinfection [accesed on january 29, 2019] . Available at: https://www.sandia.gov/cfd-water/uvdisinfection.htm
Scott, G. and Richardson, P. 1997. The application of computational fluid dynamics in the food industry. Trends in Food Science & Technology. 8(4): 119–124.
Shama, G. 2005. Ultraviolet light. In: Handbook of Food Science, Technology, and Engineering. Y.H. Hui (ed.), pp. 122-1-122- 14. CRC Press, Boca Ratón.
Shama, G. 2007. Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses. Postharvest Biology and Technology. 44(1): 1–8.
Shen, Y., Sun, Y., Qiao, L., Chen, J., Liu, D. and Ye, X. 2013. Effect of UV-C treatments on phenolic compounds and antioxidant capacity of minimally processed Satsuma mandarin during refrigerated storage. Postharvest Biology and Technology. 76: 50–57.
Sripong, K., Jitareerat, P. and Uthairatanakij, A. 2019. UV irradiation induces resistance against fruit rot disease and improves the quality of harvested mangosteen. Postharvest Biology and Technology. 149: 187–194.
Stannard, C.J., Abbiss, J.S. and Wood, J.M. 1983. Combined treatment with hydrogen peroxide and ultraviolet irradiation to reduce microbial contamination levels in preformed food packaging cartons. Journal of Food Protection. 46(12): 1060–1064.
Stannard, C.J., Abbiss, J.S. and Wood, J.M. 1985. Efficiency of treatments involving ultraviolet irradiation for decontaminating packaging board of different surface compositions. Journal of Food Protection. 48(9): 786–789.
Stevens, C., Khan, V.A., Lu, J.Y., Wilson, C.L., Pusey, P.L., Igwegbe, E.C.K., Kabwe, K., Mafolo, Y., Liu, J., Chalutz, E. and Droby, S. 1997. Integration of ultraviolet (UV-C) light with yeast treatment for control of postharvest storage rots of fruits and vegetables. Biological Control. 10(2): 98–103.
Stevens, C., Khan, V.A., Tang, A.Y. and Lu, J.Y. 1990. The effect of ultraviolet radiation on mold rots and nutrients of stored sweet potatoes. Journal of Food Protection. 53(3): 223–226.
Stevens, C., Khan, V.A., Wilson, C.L., Lu, J.Y., Chalutz, E. and Droby, S. 2005. The effect of fruit orientation of postharvest commodities following low dose ultraviolet light-C treatment on host induced resistance to decay. Crop Protection. 24(8): 756–759.
Sultan, T. 2016. Numerical study of the effects of lamp configuration and reactor wall roughness in an open channel water disinfection UV reactor. Chemosphere. 155:170–179.
Tanaka, F., Nashiro, K., Trivittayasil, V. and Uchino, T. 2016. Simulation of UV-C dose distribution and inactivation of mold spore on strawberries in a conveyor system. Food Science and Technology Research. 22(4): 461–466.
Tanaka, F., Verboven, P., Scheerlinck, N., Morita, K., Iwasaki, K. and Nicolaï, B. 2007. Investigation of far infrared radiation heating as an alternative technique for surface decontamination of strawberry. Journal of Food Engineering. 79(2): 445–452.
Taze, B.H. and Unluturk, S. 2018. Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae. 233: 370–377.
Terry, L.A. and Joyce, D.C. 2004. Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biology and Technology. 32(1): 1–13.
Trivittayasil, V., Nashiro, K., Tanaka, F., Hamanaka, D. and Uchino, T. 2015. Inactivation characteristics and modeling of mold spores by UV-C radiation based on irradiation dose. Food Science and Technology Research. 21(3): 365–370.
Trivittayasil, V., Tanaka, F. and Uchino, T. 2016. Simulation of UV-C intensity distribution and inactivation of mold spores on strawberries. Food Science and Technology Research. 22(2): 185–192.
Wang, D., Chen, L., Ma, Y., Zhang, M., Zhao, Y. and Zhao, X. 2019. Effect of UV-C treatment on the quality of fresh-cut lotus (Nelumbo nucifera Gaertn.) root. Food Chemistry. 278: 659–664.
Wang, C.Y., Chen, C.T. and Wang, S.Y. 2009. Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chemistry. 117(3): 426–431.
Wilson, C.L., Upchurch, B., El Ghaouth, A., Stevens, C., Khan, V., Droby, S. and Chalutz, E. 1997. Using an on-line UV-C apparatus to treat harvested fruit for controlling postharvest decay. HortTechnology. 7(3): 278–282.
Wu, J., Liu, W., Yuan, L., Guan, W.Q., Brennan, C.S., Zhang, Y.Y., Zhang, J. and Wang, Z.D. 2017. The influence of postharvest UV-C treatment on anthocyanin biosynthesis in fresh-cut red cabbage. Scientific Reports. 7(1): 5232.
Xia, B. and Sun, D.W. 2002. Applications of computational fluid dynamics (CFD) in the food industry: a review. Computers and Electronics in Agriculture. 34(1-3): 5–24.
Yan, R., Yun, J., Gurtler, J. and Fan, X. 2017. Radiochromic film dosimetry for UV-C treatments of apple fruit. Postharvest Biology and Technology. 127: 14–20.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)