Fuentes dietarias, biodisponibilidad y efectos en la salud de carotenoides

Fuentes dietarias, biodisponibilidad y efectos en salud de carotenoides


  • CI Victoria-Campos Autonomous University of San Luis Potosí, Faculty of Nursing and Nutrition. https://orcid.org/0000-0002-3668-7743
  • J Ornelas-Paz Food and Development Research Center, A.C.-Cuauhtémoc Unit, Av. Río Conchos S/N, Industrial Park. C.P. 31570, Cd. Cuauhtémoc, Chihuahua, Mexico.
  • S Ruiz-Cruz Department of Research and Graduate Studies in Food, University of Sonora
  • JJ Ornelas-Paz Centro de Investigación en Alimentación y Desarrollo A.C. https://orcid.org/0000-0003-1989-019X
  • B Cervantes-Paz Autonomous University of San Luis Potosí, Research Institute of Desert Areas https://orcid.org/0000-0001-6976-9684
  • JD Perez-Martinez Autonomous University of San Luis Potosí, Faculty of Chemical Sciences https://orcid.org/0000-0002-8083-3058
  • AA Gardea-Bejar Food and Development Research Center A.C. (CIAD, A.C.) - Guaymas Unit
  • EM Yahia Autonomous University of Querétaro, Faculty of Natural Sciences
  • V Ibarra-Junquera University of Colima, Bioengineering Laboratory



Palabras clave:

Alimentos vegetales, Pigmentos no polares, absorción, nutracéuticos, bioactividad


Los carotenoides son compuestos no polares que se encuentran en frutas y hortalizas. El consumo de estos compuestos se ha asociado con muchos efectos benéficos para la salud humana, especialmente en la prevención de enfermedades crónicas que actualmente se consideran problemas de salud pública. Estos efectos se han atribuido principalmente a las propiedades antioxidantes de los carotenoides, aunque muchos otros mecanismos están involucrados en estos efectos, incluida la influencia de los carotenoides en la expresión de genes implicados en la patogénesis de estas enfermedades. Desafortunadamente, la biodisponibilidad de estos compuestos es muy limitada, razón por la cual se han estudiado los efectos de varios factores en la biodisponibilidad de los carotenoides con el fin de identificar las mejores estrategias para aumentar la absorción de estos compuestos y, en consecuencia, su bioactividad. En esta revisión se analizan de manera sistemática los descubrimientos recientes sobre la composición de carotenoides en alimentos de origen vegetal y su biodisponibilidad y efectos protectores de la salud humana.


Bakker, M.F., Peeters, P.H., Klaasen, V.M., Bueno-de-Mesquita, H.B., Jansen, E.H., Ros, M.M., Travier, N., Olsen, A., Tjønneland, A., Overvad, K. y Rinaldi, S. 2016. Plasma carotenoids, vitamin C, tocopherols, and retinol and the risk of breast cancer in the European Prospective Investigation into Cancer and Nutrition cohort, 2. The American Journal of Clinical Nutrition. 103(2): 454–464.

Behsnilian, D. y Mayer-Miebach, E. 2017. Impact of blanching, freezing and frozen storage on the carotenoid profile of carrot slices (Daucus carota L. cv. Nutri Red). Food Control. 73: 761–767.

Bergantin, C., Maietti, A., Tedeschi, P., Font, G., Manyes, L. y Marchetti, N. 2018. HPLC-UV/Vis-APCI-MS/MS determination of major carotenoids and their bioaccessibility from “Delica”(Cucurbita maxima) and “Violina”(Cucurbita moschata) pumpkins as food traceability markers. Molecules. 23(11): 2791.

Bonet, M.L., Ribot, J., Galmés, S., Serra, F. y Palou, A. 2020. Carotenoids and carotenoid conversion products in adipose tissue biology and obesity: Pre-clinical and human studies. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. 1865(11): 158676.

Britton, G. 2020. Carotenoid research: History and new perspectives for chemistry in biological systems. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. 1865: 158699.

Cano, M.P., Gómez-Maqueo, A., Fernández-López, R., Welti-Chanes, J. y García-Cayuela, T. 2019. Impact of high hydrostatic pressure and thermal treatment on the stability and bioaccessibility of carotenoid and carotenoid esters in astringent persimmon (Diospyros kaki Thunb, var. Rojo Brillante). Food Research International. 123: 538–549.

Cao, S., Liang, M., Shi, L., Shao, J., Song, C., Bian, K., Chen, W. y Yang, Z. 2017. Accumulation of carotenoids and expression of carotenogenic genes in peach fruit. Food Chemistry, 214, 137–146.

Cervantes-Paz, B., Yahia, E.M., Ornelas-Paz, J.J., Gardea-Béjar, A.A., Ibarra-Junquera, V. y Pérez-Martínez, J.D. 2012. Effect of heat processing on the profile of pigments and antioxidant capacity of green and red Jalapeño peppers. Journal of Agricultural and Food Chemistry. 60(43): 10822–10833.

Cervantes-Paz, B., Ornelas-Paz, J.J., Pérez-Martínez, J.D., Reyes-Hernández, J., Zamudio-Flores, P.B., Rios-Velasco, C., Ibarra-Junquera, V. y Ruiz-Cruz, S. 2016. Effect of pectin concentration and properties on digestive events involved on micellarization of free and esterified carotenoids. Food Hydrocolloids. 60: 580–588.

Cervantes-Paz, B., Ornelas-Paz, J.J., Ruiz-Cruz, S., Rios-Velasco, C., Ibarra-Junquera, V., Yahia, E.M. y Gardea-Béjar, A.A. 2017. Effects of pectin on lipid digestion and possible implications for carotenoid bioavailability during pre-absorptive stages: A review. Food Research International. 99: 917–927.

Cervantes-Paz, B., Yahia, E.M., Ornelas-Paz, J. de J., Victoria-Campos, C.I., Pérez-Martínez, J.D. y Reyes-Hernández, J. 2021. Bioaccessibility of fat-soluble bioactive compounds (FSBC) from avocado fruit as affected by ripening and FSBC composition in the food matrix. Food Research International. 139: 109960.

Condurso, C., Verzera, A., Dima, G., Tripodi, G., Crinò, P., Paratore, A. y Romano, D. 2012. Effects of different rootstocks on aroma volatile compounds and carotenoid content of melon fruits. Scientia horticulturae, 148: 9–16.

Corte-Real, J., Bertucci, M., Soukoulis, C., Desmarchelier, C., Borel, P., Richling, E., Hoffmann L. y Bohn, T. 2017. Negative effects of divalent mineral cations on the bioaccessibility of carotenoids from plant food matrices and related physical properties of gastro-intestinal fluids. Food & Function. 8(3): 1008–1019.

Corte-Real, J., Desmarchelier, C., Borel, P., Richling, E., Hoffmann, L. y Bohn, T. 2018. Magnesium affects spinach carotenoid bioaccessibility in vitro depending on intestinal bile and pancreatic enzyme concentrations. Food Chemistry. 239: 751–759.

da Costa, G.A. y Mercadante, A.Z. 2018. In vitro bioaccessibility of free and esterified carotenoids in cajá frozen pulp-based beverages. Journal of Food Composition and Analysis. 68: 53–59.

De Andrade Lima, M., Charalampopoulos, D. y Chatzifragkou, A. 2018. Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels. The Journal of supercritical fluids. 133: 94–102.

de la Fuente, B., López-García, G., Máñez, V., Alegría, A., Barberá, R. y Cilla, A. 2019. Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods. 8(7): 250.

de Oliveira, C.L., Brychkova, G., Esteves-Ferreira, A.A., McKeown, P., de Souza Gomes, M., Maluf, W.R., Augusto-Gomez L.A. y Spillane, C. 2020. Thermal disruption of the food matrix of biofortified lettuce varieties modifies absorption of carotenoids by Caco-2 cells. Food Chemistry: 308: 125443.

Dhliwayo, T., Palacios‐Rojas, N., Crossa, J. y Pixley, K.V. 2014. Effects of S1 recurrent selection for provitamin A carotenoid content for three open‐pollinated maize cultivars. Crop Science. 54(6): 2449–2460.

Desmarchelier, C. y Borel, P. 2017. Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations. Trends in Food Science & Technology. 69(Part B): 270–280.

de Souza Mesquita, L.M., Neves, B.V., Pisani, L.P. y de Rosso, V.V. 2020. Mayonnaise as a model food for improving the bioaccessibility of carotenoids from Bactris gasipaes fruits. LWT. 122: 109022.

Dhuique-Mayer, C., Servent, A., Messan, C., Achir, N., Dornier, M. y Mendoza, Y. 2018. Bioaccessibility of biofortified sweet potato carotenoids in baby food: impact of manufacturing process. Frontiers in Nutrition: 5: 98.

Diamante, M.S., Borges, C.V., Minatel, I.O., Jacomino, A.P., Basílio, L.S.P., Monteiro, G.C., Correa C.R., de Oliveira R.A. y Lima, G.P.P. 2021. Domestic cooking practices influence the carotenoid and tocopherol content in colored cauliflower. Food Chemistry. 340: 127901.

Donado-Pestana, C.M., Salgado, J.M., de Oliveira Rios, A., dos Santos, P.R. y Jablonski, A. 2012. Stability of carotenoids, total phenolics and in vitro antioxidant capacity in the thermal processing of orange-fleshed sweet potato (Ipomoea batatas Lam.) cultivars grown in Brazil. Plant foods for human nutrition. 67(3): 262–270.

Elizondo-Montemayor, L., Ramos-Parra, P.A., Jacobo-Velázquez, D.A., Treviño-Saldaña, N., Marín-Obispo, L.M., Ibarra-Garza, I.P., Garcia-Amezquita, L.E., del Follo-Martínez, A., Welti-Chanes, J. y Hernández-Brenes, C. 2020. High hydrostatic pressure stabilized micronutrients and shifted dietary fibers, from insoluble to soluble, producing a low-glycemic index mango pulp. CyTA-Journal of Food. 18(1): 203–215.

Eriksen, J.N., Luu, A.Y., Dragsted, L.O. y Arrigoni, E. 2017. Adaption of an in vitro digestion method to screen carotenoid liberation and in vitro accessibility from differently processed spinach preparations. Food Chemistry. 224: 407–413.

Etzbach, L., Stolle, R., Anheuser, K., Herdegen, V., Schieber, A. y Weber, F. 2020. Impact of different pasteurization techniques and subsequent ultrasonication on the in vitro bioaccessibility of carotenoids in Valencia Orange (Citrus sinensis (L.) Osbeck) juice. Antioxidants. 9(6): 534.

Ferioli, F., Giambanelli, E., D'Antuono, L. F., Costa, H.S., Albuquerque, T.G., Silva, A.S., Hayran, O. y Koçaoglu, B. 2013. Comparison of leafy kale populations from Italy, Portugal, and Turkey for their bioactive compound content: phenolics, glucosinolates, carotenoids, and chlorophylls. Journal of the Science of Food and Agriculture. 93(14): 3478–3489.

Fernandez-Orozco, R., Gallardo-Guerrero, L. y Hornero-Méndez, D. 2013. Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: Accumulation of carotenoids mediated by xanthophyll esterification. Food chemistry. 141(3): 2864–2872.

Fratianni, A., Adiletta, G., Di Matteo, M., Panfili, G., Niro, S., Gentile, C., Farina, V., Cinquanta, L. y Corona, O. 2020. Evolution of carotenoid content, antioxidant activity and volatiles compounds in dried mango fruits (Mangifera indica L.). Foods. 9(10): 1424.

García‐Cayuela, T., Nuño‐Escobar, B., Welti‐Chanes, J. y Cano, M.P. 2018. In vitro bioaccessibility of individual carotenoids from persimmon (Diospyros kaki, cv. Rojo Brillante) used as an ingredient in a model dairy food. Journal of the Science of Food and Agriculture. 98(9): 3246–3254.

García-Romera, M.C., Silva-Viguera, M.C., López-Izquierdo, I., López- Muñoz, A., Capote-Puente, R. y Gargallo-Martínez, B. 2022. Effect of macular pigment carotenoids on cognitive functions: A systematic review. Physiology & Behavior. 254: 113891.

Goltz, S.R., Campbell, W.W., Chitchumroonchokchai, C., Failla, M.L. y Ferruzzi, M.G. 2012. Meal triacylglycerol profile modulates postprandial absorption of carotenoids in humans. Molecular Nutrition & Food Research. 56(6): 866–877.

González-Casado, S., Martín-Belloso, O., Elez-Martínez, P. y Soliva-Fortuny, R. 2018. Application of pulsed electric fields to tomato fruit for enhancing the bioaccessibility of carotenoids in derived products. Food & Function. 9(4): 2282–2289.

Hayes, M., Pottorff, M., Kay, C., Van Deynze, A., Osorio-Marin, J., Lila, M. A., Iorrizo M. y Ferruzzi, M.G. 2020. In vitro bioaccessibility of carotenoids and chlorophylls in a diverse collection of spinach accessions and commercial cultivars. Journal of Agricultural and Food Chemistry. 68(11): 3495–3505.

Hempel, J., Schädle, C.N., Sprenger, J., Heller, A., Carle, R. y Schweiggert, R.M. 2017. Ultrastructural deposition forms and bioaccessibility of carotenoids and carotenoid esters from goji berries (Lycium barbarum L.). Food Chemistry. 218: 525–533.

Hu, K., Peng, D., Wang, L., Liu, H., Xie, B. y Sun, Z. 2021. Effect of mild high hydrostatic pressure treatments on physiological and physicochemical characteristics and carotenoid biosynthesis in postharvest mango. Postharvest Biology and Technology. 172: 111381.

Iddir, M., Porras Yaruro, J.F., Cocco, E., Hardy, E.M., Appenzeller, B.M., Guignard, C., Larondelle Y. y Bohn, T. 2021. Impact of protein-enriched plant food items on the bioaccessibility and cellular uptake of carotenoids. Antioxidants. 10(7): 1005.

Iskandar, A.R., Miao, B., Li, X., Hu, K.Q., Liu, C. y Wang, X.D. 2016. β-cryptoxanthin reduced lung tumor multiplicity and inhibited lung cancer cell motility by downregulating nicotinic acetylcholine receptor α7 signaling. Cancer Prevention Research. 9(11): 875–886.

Jacobo-Velázquez, D.A. y Hernández-Brenes, C. 2012. Stability of avocado paste carotenoids as affected by high hydrostatic pressure processing and storage. Innovative Food Science & Emerging Technologies. 16: 121–128.

Jeffery, J.L., Turner, N.D. y King, S.R. 2012. Carotenoid bioaccessibility from nine raw carotenoid‐storing fruits and vegetables using an in vitro model. Journal of the Science of Food and Agriculture. 92(13): 2603–2610.

Karppi, J., Kurl, S., Mäkikallio, T.H., Ronkainen, K. y Laukkanen, J.A. 2013. Serum β-carotene concentrations and the risk of congestive heart failure in men: a population-based study. International Journal of Cardiology. 168(3): 1841–1846.

Kim, J.H., Lee, J., Choi, I.J., Kim, Y.I., Kwon, O., Kim, H. y Kim, J. 2018. Dietary carotenoids intake and the risk of gastric cancer: A case—control study in Korea. Nutrients. 10(8): 1031.

Kljak, K. y Grbeša, D. 2015. Carotenoid content and antioxidant activity of hexane extracts from selected Croatian corn hybrids. Food Chemistry. 167: 402–408.

Kopec, R.E. y Failla, M.L. 2018. Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles. Journal of Food Composition and Analysis. 68: 16–30.

Kourouma, V., Mu, T.H., Zhang, M. y Sun, H.N. 2019. Effects of cooking process on carotenoids and antioxidant activity of orange-fleshed sweet potato. Lwt. 104: 134–141.

Kulczyński, B., Gramza-Michałowska, A., Kobus-Cisowska, J. y Kmiecik, D. 2017. The role of carotenoids in the prevention and treatment of cardiovascular disease – Current state of knowledge. Journal of Functional Foods. 38(Part A): 45–65.

Lara-Abia, S., Welti-Chanes, J. y Cano, M.P. 2021. Effect of high hydrostatic pressure on the extractability and bioaccessibility of carotenoids and their esters from papaya (Carica papaya L.) and its impact on tissue microstructure. Foods. 10(10): 2435.

Laurora, A., Bingham, J.P., Poojary, M.M., Wall, M.M. y Ho, K.K. 2021. Carotenoid composition and bioaccessibility of papaya cultivars from Hawaii. Journal of Food Composition and Analysis. 101: 103984.

Lebaka, V. R., Wee, Y. J., Ye, W. y Korivi, M. 2021. Nutritional composition and bioactive compounds in three different parts of mango fruit. International Journal of Environmental Research and Public Health. 18(2): 741.

Leong, S. Y. y Oey, I. 2012. Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food chemistry. 133(4): 1577–1587.

Li, Q., Li, T., Liu, C., Chen, J., Zhang, R., Zhang, Z., Dai T. y McClements, D.J. 2016. Potential physicochemical basis of Mediterranean diet effect: Ability of emulsified olive oil to increase carotenoid bioaccessibility in raw and cooked tomatoes. Food Research International. 89: 320–329.

Liang, M., Su, X., Yang, Z., Deng, H., Yang, Z., Liang, R. y Huang, J. 2020. Carotenoid composition and expression of carotenogenic genes in the peel and pulp of commercial mango fruit cultivars. Scientia Horticulturae. 263: 109072.

López-Gámez, G., Elez-Martínez, P., Martín-Belloso, O. y Soliva-Fortuny, R. 2021. Pulsed electric field treatment strategies to increase bioaccessibility of phenolic and carotenoid compounds in oil-added carrot purees. Food Chemistry. 364: 130377.

Lu, M.S., Fang, Y.J., Chen, Y.M., Luo, W.P., Pan, Z.Z., Zhong, X. y Zhang, C.X. 2015. Higher intake of carotenoid is associated with a lower risk of colorectal cancer in Chinese adults: a case–control study. European Journal of Nutrition, 54(4): 619–628.

Ma, T., Tian, C., Luo, J., Sun, X., Quan, M., Zheng, C. y Zhan, J. 2015. Influence of technical processing units on the α-carotene, β-carotene and lutein contents of carrot (Daucus carrot L.) juice. Journal of Functional Foods. 16: 104–113.

Mapelli-Brahm, P., Stinco, C.M., Rodrigo, M.J., Zacarías, L. y Meléndez-Martínez, A.J. 2018. Impact of thermal treatments on the bioaccessibility of phytoene and phytofluene in relation to changes in the microstructure and size of orange juice particles. Journal of Functional Foods. 46: 38–47.

Matsumoto, M., Waki, N., Suganuma, H., Takahashi, I., Kurauchi, S., Sawada, K., Tokuda, I., Misawa, M., Ando, M., Itoh, K. y Ihara, K. 2020. Association between biomarkers of cardiovascular diseases and the blood concentration of carotenoids among the general population without apparent illness. Nutrients. 12(8): 2310.

Meléndez-Martínez, A.J., Pérez-Gálvez, A., Roca, M., Estévez-Santiago, R., Olmedilla-Alonso, B., Mercadante, A.Z. y Ornelas-Paz, J.J. 2017. Bioavailability of carotenoids, determining factors and estimation methods (in Spanish). En: Carotenoides en agroalimentación y salud. Meléndez-Martínez A.J. (ed.), pp 574-608. Editorial Terracota S.A. de C.V., México.

Mercado-Mercado, G., Montalvo-González, E., González-Aguilar, G.A., Alvarez-Parrilla, E. y Sáyago-Ayerdi, S.G. 2018. Ultrasound-assisted extraction of carotenoids from mango (Mangifera indica L.‘Ataulfo’) by-products on in vitro bioaccessibility. Food Bioscience. 21: 125–131.

Munter, L., Maasland, D.H., van den Brandt, P.A., Kremer, B. y Schouten, L.J. 2015. Vitamin and carotenoid intake and risk of head-neck cancer subtypes in the Netherlands Cohort Study. The American Journal of Clinical Nutrition. 102(2): 420–432.

Ordóñez-Santos, L.E., Martínez-Girón, J. y Arias-Jaramillo, M.E. 2017. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry. 233: 96–100.

Ornelas-Paz, J.J., Yahia, E.M. y Gardea-Béjar, A.A. 2010. Bioconversion efficiency of β-carotene from mango fruit and carrots in vitamin A. American Journal of Agricultural and Biological Sciences. 5(3): 301–308.

Ornelas-Paz, J.J. y Yahia, E.M. 2014. Effect of the moisture content of the forced hot air on the postharvest quality and bioactive compounds of mango fruit (Mangifera indica L. Cv. Manila). Journal of the Science of Food and Agriculture. 94(6): 1078–1083.

Ornelas-Paz, J.J., Meza, M.B., Obenland, D., Friscia, K.R., Jain, A., Thornton, S. y Prakash, A. 2017. Effect of phytosanitary irradiation on the postharvest quality of Seedless Kishu mandarins (Citrus kinokuni mukakukishu). Food Chemistry. 230: 712–720.

Ranganath, K.G., Shivashankara, K.S., Roy, T.K., Dinesh, M.R., Geetha, G.A., Pavithra, K.C. y Ravishankar, K.V. 2018. Profiling of anthocyanins and carotenoids in fruit peel of different colored mango cultivars. Journal of Food Science and Technology. 55(11): 4566–4577.

Reboul, E. 2013. Absorption of vitamin A and carotenoids by enterocyte: focus on transport proteins. Nutrients. 5(9): 3563–3581.

Reif, C., Arrigoni, E., Berger, F., Baumgartner, D. y Nyström, L. 2013. Lutein and β-carotene content of green leafy Brassica species grown under different conditions. LWT-Food Science and Technology. 53(1): 378–381.

Rock, C.L. y Swendseid, M.E. 1992. Plasma β-carotene response in humans after meals supplemented with dietary pectin. The American Journal of Clinical Nutrition. 55(1): 96–99.

Rowles, J.L. y Erdman, J.W. 2020. Carotenoids and their role in cancer prevention. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. 1865: 158613.

Samuolienė, G., Brazaitytė, A., Sirtautas, R., Viršilė, A., Sakalauskaitė, J., Sakalauskienė, S. y Duchovskis, P. 2013. LED illumination affects bioactive compounds in romaine baby leaf lettuce. Journal of the Science of Food and Agriculture. 93(13): 3286–3291.

Schweiggert, R.M., Mezger, D., Schimpf, F., Steingass, C.B. y Carle, R. 2012. Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato. Food Chemistry. 135(4): 2736–2742.

Schweiggert, R.M. y Carle, R. 2017. Carotenoid deposition in plant and animal foods and its impact on bioavailability. Critical Reviews in Food Science and Nutrition. 57(9): 1807–1830.

Sluijs, I., Cadier, E., Beulens, J.W.J., Spijkerman, A.M.W. y Van der Schouw, Y.T. 2015. Dietary intake of carotenoids and risk of type 2 diabetes. Nutrition, Metabolism and Cardiovascular Diseases. 25(4): 376–381.

Suo, G., Zhou, C., Su, W. y Hu, X. 2022. Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage. Ultrasonics Sonochemistry. 84: 105974.

Swapnil, P., Meena, M., Singh, S.K., Dhuldhaj, U.P., Harish. y Marwal, A. 2021. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Current Plant Biology. 26:100203.

Szczepańska, J., Skąpska, S., Połaska, M. y Marszałek, K. 2022. High pressure homogenization with a cooling circulating system: The effect on physiochemical and rheological properties, enzymes, and carotenoid profile of carrot juice. Food Chemistry. 370: 131023.

Van Hoang, D., Pham, N.M., Lee, A.H., Tran, D.N. y Binns, C.W. 2018. Dietary carotenoid intakes and prostate cancer risk: A case-control study from Vietnam. Nutrients. 10(1): 70.

Viacava, F., Ramos-Parra, P.A., Welti-Chanes, J. y Jacobo-Velázquez, D.A. 2021. High hydrostatic pressure processing of whole carrots: Effect of static and multi-pulsed mild intensity hydrostatic pressure treatments on bioactive compounds. Foods. 10(2): 219.

Victoria-Campos, C.I., Ornelas-Paz, J.J., Yahia, E.M., Jiménez-Castro, J.A., Cervantes-Paz, B., Ibarra-Junquera, V., Pérez-Martínez, J.D., Zamudio-Flores, P.B. y Escalante-Minakata, P. 2013. Effect of ripening, heat-processing, and fat type on the micellarization of pigments from jalapeño peppers. Journal of Agricultural and Food Chemistry. 61(41): 9938–9949.

Wang, Y., Chung, S.J., McCullough, M.L., Song, W.O., Fernandez, M.L., Koo, S.I. y Chun, O.K. 2014. Dietary carotenoids are associated with cardiovascular disease risk biomarkers mediated by serum carotenoid concentrations. The Journal of Nutrition. 144(7): 1067–1074

Yahia, E. M., Ornelas-Paz, J. J., Emanuelli, T., Jacob-Lopes, E., Queiroz-Zepka, L. y Cervantes-Paz, B. 2018. Chemistry, stability and biological actions of carotenoids. En: Fruit and vegetable phytochemicals. Yahia, E.M. (ed.), pp 285–345. Blackwell Publishing., England.

Yuan, C., Chen, H., Wang, Y., Schneider, J.A., Willett, W.C. y Morris, M.C. 2021. Dietary carotenoids related to risk of incident Alzheimer dementia (AD) and brain AD neuropathology: a community-based cohort of older adults. The American Journal of Clinical Nutrition. 113(1): 200–208.

Zhang, Z., Wei, Q., Nie, M., Jiang, N., Liu, C., Liu, C., Li, D. y Xu, L. 2018. Microstructure and bioaccessibility of different carotenoid species as affected by hot air drying: Study on carrot, sweet potato, yellow bell pepper and broccoli. LWT. 96: 357–363

Zhang, W., Yu, Y., Xie, F., Gu, X., Wu, J. y Wang, Z. 2019. High pressure homogenization versus ultrasound treatment of tomato juice: Effects on stability and in vitro bioaccessibility of carotenoids. LWT. 116: 108597.

Zhao, J.J., Wang, J.B., Zhang, X.C., Li, H.L. y Gao, Z.Y. 2013. Effect of bagging on the composition of carbohydrate, organic acid and carotenoid contents in mango fruit. Acta Hortic. 992: 537–542.

Zhong, S., Vendrell-Pacheco, M., Heskitt, B., Chitchumroonchokchai, C., Failla, M., Sastry, S.K., Francis, D.M., Martínez-Belloso, O., Elez-Martínez, P. y Kopec, R.E. 2019. Novel processing technologies as compared to thermal treatment on the bioaccessibility and Caco-2 cell uptake of carotenoids from tomato and kale-based juices. Journal of Agricultural and Food Chemistry. 67(36): 10185–10194.

Zhou, W., Niu, Y., Ding, X., Zhao, S., Li, Y., Fan, G., Zhang, S. y Liao, K. 2020. Analysis of carotenoid content and diversity in apricots (Prunus armeniaca L.) grown in China. Food Chemistry. 330: 127223.




Cómo citar

Victoria-Campos, C. I. ., Ornelas-Paz, J. ., Ruiz-Cruz, S. ., Ornelas-Paz, J. de J., Cervantes-Paz, B. ., Rios-Velasco, C. ., Pérez-Martínez, J. D., Gardea-Béjar, A. A. ., Yahia, E. M. ., & Ibarra-Junquera, V. . (2022). Fuentes dietarias, biodisponibilidad y efectos en la salud de carotenoides: Fuentes dietarias, biodisponibilidad y efectos en salud de carotenoides. Biotecnia, 25(1), 156–168. https://doi.org/10.18633/biotecnia.v25i1.1809



Artículos de revisión