APLICACIÓN DE TRATAMIENTOS TÉRMICOS A FRUTOS DE AGUACATE PARA PROLONGAR SU VIDA DE ANAQUEL

  • MA López-Mata Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora
  • Saúl Ruiz-Cruz Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora
  • JJ Ornelas-Paz Centro de Investigación en Alimentación y Desarrollo, A.C.
  • LE Gassos-Ortega Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora
Palabras clave: Aguacate, aire caliente, vapor caliente, agua caliente, luz solar, tratamientos térmicos

Resumen

Esta revisión resume los avances que han tenido los tratamientos térmicos (TT) utilizados para prolongar la vida útil del aguacate. Las tecnologías que se han venido utilizando a través del tiempo se pueden dividir en aire caliente (AC), vapor caliente (VC), agua caliente (AGC), exposición a luz solar (LS) y radiofrecuencia (RF). Los estudios muestran inconsistencia en sus resultados, debido a que la respuesta fisiológica del fruto de aguacate depende de la variedad, estación del año, lugar de recolección, prácticas de producción y falta de uniformidad en el calentamiento, la exposición o no al sol. Los TT que presentan mejores resultados en mantener la firmeza, retrasar la producción de etileno, disminución de la fuga de electrólitos y menor DF, han sido la LS, AGC y la combinación entre ellos. La exposición a LS induce estrés térmico diurno que aumenta la expresión de las proteínas del choque térmico (HSP17 y HSP70) que pre-condiciona al aguacate a resistir la aplicación de AGC a 50 ºC y el posterior almacenamiento a 0,5 ºC por 28 días.

Citas

Abu-Aziz, A. E. M. B., Ahmed, F. M., Ahmed, D. M., Yousef, A. R., Dokki, E. T. y El-Gamaa, G. 2009. Utilization of hot water treatments for reducing external damage and maintain quality of Hass avocado fruits. Research Journal of Agriculture and Biological Sciences. 5: 1046-1053.

Aluja, M., Díaz-Fleischer, F. y Arredondo, J. 2004. Nonhost status of commercial Persea americana'Hass' to Anastrepha ludens, Anastrepha obliqua, Anastrepha serpentina, and Anastrepha striata (Diptera: Tephritidae) in Mexico. Journal of economic entomology. 97: 293-309.

Bello, A. 1997. La retirada del bromuro de metilo como fumigante. Vida Rural. 4: 70-72.

Birla, S., Wang, S., Tang, J. y Hallman, G. 2004. Improving heating uniformity of fresh fruit in radio frequency treatments for pest control. Postharvest Biology and Technology. 33: 205-217.

Birla, S., Wang, S., Tang, J. y Tiwari, G. 2008. Characterization of radio frequency heating of fresh fruits influenced by dielectric properties. Journal of Food Engineering. 89: 390-398.

Cáceres, I., Mulkay, T., Rodríguez, J., Paumier, A. y Sisino, A. 2003. Tratamientos postcosecha para alargar la vida de anaquel del aguacate. Normas de Publicación: 20.

Donkin, D. y Wolstenholme, B. 1995. Post-harvest heat treatments with a view to reducing chilling injury in Fuerte avocado fruit. South African Avocado Growers' Association Yearbook. 18: 80-84.

Eaks, I. L. 1978. Ripening, respiration, and ethylene production of ‘Hass’ avocado fruits at 20 to 40 C. Journal of American Society for Horticulture Science. 103: 576-578.

Fallik, E. 2004. Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biology and Technology. 32: 125-134.

Ferguson, I. B., Lurie, S. y Bowen, J. H. 1994. Protein synthesis and breakdown during heat shock of cultured pear (Pyrus communis L.) cells. Plant physiology. 104: 1429-1437.

Gaffney, J., Hallman, G. y Sharp, J. 1990. Vapor heat research unit for insect quarantine treatments. Journal of economic entomology. 83: 1965-1971.

Grové, T., De Beer, M. y Steyn, W. 1999. The effect of heat shock treatments followed by a quarantine cold treatment on avocado fruit quality. South African Avocado Growers' Association Yearbook. 22: 102-105.

Hershkovitz, V., Friedman, H., Goldschmidt, E. E. y Pesis, E. 2009. The role of the embryo and ethylene in avocado fruit mesocarp discoloration. Journal of experimental botany. 60: 791-799.

Hofman, P. J., Stubbings, B. A., Adkins, M. F., Corcoran, R. J., White, A. y Woolf, A. B. 2003. Low temperature conditioning before cold disinfestation improves ‘Hass’ avocado fruit quality. Postharvest Biology and Technology. 28: 123-133.

Hofman, P. J., Stubbings, B. A., Adkins, M. F., Meiburg, G. F. y Woolf, A. B. 2002. Hot water treatments improve ‘Hass’ avocado fruit quality after cold disinfestation. Postharvest Biology and Technology. 24: 183-192.

Ito, P. J. y Hamilton, R. A. 1980. Fumigation of avocado fruit with methyl bromide. HortScience. 15: 593.

Joyce, D. C. y Shorter, A. J. 1994. High-temperature conditioning reduces hot water treatment injury of Kensington pride mango fruit. HortScience. 29: 1047-1051.

Kader, A. A. 1997. Fruit maturity, ripening, and quality relationships. International Symposium. Effect of pre-& postharvest factors in fruit storage. 485: 203-208.

Kerbel, E. L., Mitchell, F. G. y Mayer, G. 1987. Effect of postharvest heat treatments for insect control on the quality and market life of avocados. HortScience. 22: 92-94.

Klein, J. y Lurie, S. 1991. Postharvest heat treatment and fruit quality. Postharvest News and information. 2: 15-19.

Kritzinger, M. y Kruger, F. 1997. Preliminary results on the evaluation of hot water heatshock treatment of South African avocados. South African Avocado Growers' Association Yearbook. 20: 15.

Kritzinger, M., Kruger, F. y Bezuidenhout, M. 1998. Further evaluation of hot water/air heatshock treatment of South African avocados. South African Avocado Growers' Association Yearbook. 21: 93-96.

Lagunas-Solar, M., Zeng, N., Essert, T., Truong, T. y Cecilia Piña, U. 2006. Radiofrequency power disinfects and disinfests food, soils and wastewater. California agriculture. 60: 192-199.

Latta, R. 1932. The vapor-heat treatment as applied to the control of Narcissus pests. Journal of economic entomology. 25: 1020-1026.

Lurie, S. 1998. Postharvest heat treatments. Postharvest Biology and Technology. 14: 257-269.

Lurie, S. y Klein, J. D. 1991. Acquisition of low-temperature tolerance in tomatoes by exposure to high-temperature stress. Journal of the American Society for Horticultural Science. 116: 1007-1012.

Mccollum, T. G., D'aquino, S. y Mcdonald, R. E. 1993. Heat treatment inhibits mango chilling injury. HortScience, 28: 197-198.

Moskowitz, A. H. y Hrazdina, G. 1981. Vacuolar contents of fruit subepidermal cells from Vitis species. Plant physiology. 68: 686-692.

Nelson, S. 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Transactions-American Society of Agricultural Engineers. 39: 1475-1484.

Nishijima, K. A., Chan Jr, H. T., Sanxter, S. S. y Linse, E. S. 1995. Reduced heat shock period of Sharwil avocado for cold tolerance in quarantine cold treatment. HortScience. 30: 1052-1053.

Ornelas P, J. y Yahia, E. M. 2004. Effects of prestorage dry and humid hot air treatments on the quality, triglycerides and tocopherol contents in ‘Hass’avocado fruit. Journal of Food Quality. 27: 115-126.

Paull, R. E. y Chen, N. J. 1990. Heat shock response in field-grown, ripening papaya fruit. Journal of the American Society for Horticultural Science, 115, 623-631.

Plumbley, R., Prusky, D. y Kobiler, I. 1993. The effect of hot‐water treatment on the levels of antifungal diene and quiescence of Colletotrichum gloeosporioides in avocado fruits. Plant pathology. 42: 116-120.

Sanxter, S. S., Nishijima, K. A. y Chan Jr, H. T. 1994. Heat-treating Sharwil avocado for cold tolerance in quarantine cold treatments. HortScience. 29: 1166-1168.

Sitrit, Y., Riov, J. y Blumenfeld, A. 1986. Regulation of ethylene biosynthesis in avocado fruit during ripening. Plant physiology. 81: 130-135.

USDA-APHIS 2009. Certifying facilities. Certification of hot water immersion facilities. Treatment Manual. En: http://www.aphis.usda.gov/.

Vierling, E. 1991. The roles of heat shock proteins in plants. Annual review of plant biology. 42: 579-620.

Vorster, L., Toerien, J. y Bezuidenhout, J. 1987. A storage temperature regime for South African export avocados. South African Avocado Growers’ Association Yearbook. 10: 146-148.

Wang, S. y Tang, J. 2004. Radio frequency heating: a potential method for post-harvest pest control in nuts and dry products. Journal of Zhejiang University-Science A. 5: 1169-1174.

Weller, P., Wolstenholme, B. y Savage, M. 1998. Post-harvest Vapour heat treatment of Hass and Fuerte avocado for the 1997 Season. South African Avocado Growers' Association Yearbook. 21: 88-92.

Woolf, A. B. 1997. Reduction of chilling injury in storedhass' avocado fruit by 38° C water treatments. HortScience. 32:1247-1251.

Woolf, A. B. y Lay-Yee, M. 1997. Pretreatments at 38 C of Hass' avocado confer thermotolerance to 50 C hot water treatments. HortScience.32: 705-708.

Woolf, A., Ferguson, I., Requejo-Tapia, L., Boyd, L., Laing, W. y White, A. 1999a. Impact of sun exposure on harvest quality of ‘Hass’ avocado fruit. Revista Chapingo Serie Horticultural. 5: 352-358.

Woolf, A. B., Bowen, J. H. y Ferguson, I. B. 1999b. Preharvest exposure to the sun influences postharvest responses of ‘Hass’ avocado fruit. Postharvest Biology and Technology. 15: 143-153.

Woolf, A. B., Watkins, C. B., Bowen, J. H., Lay-Yee, M., Maindonald, J. H. y Ferguson, I. B. 1995. Reducing external chilling injury in stored Hass avocados with dry heat treatments. Journal of the American Society for Horticultural Science. 120: 1050-1056.

Woolf, A. B., Wexler, A., Prusky, D., Kobiler, E. y Lurie, S. 2000. Direct sunlight influences postharvest temperature responses and ripening of five avocado cultivars. Journal of the American Society for Horticultural Science. 125: 370-376.

Yang, S. F. y Hoffman, N. E. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology. 35: 155-189.

Publicado
2013-12-30
Sección
Artículos