Microencapsulación de extractos de higo (Ficus carica) por coacervación compleja y evaluación de su capacidad antioxidante//Microencapsulation of fig (Ficus carica) extracts by complex coacervation and evaluation of its antioxidant capacity

Autores/as

  • Laura Elena Manzanarez-Tenorio Instituto Tecnológico de Sonora, Departamento de Biotecnología y Ciencias Alimentarias. 5 de febrero 818 Sur, C.P. 85000, Cd. Obregón, Sonora, México
  • Saúl Ruiz Cruz Instituto Tecnológico de Sonora, Departamento de Biotecnología y Ciencias Alimentarias. 5 de febrero 818 Sur, C.P. 85000, Cd. Obregón, Sonora, México https://orcid.org/0000-0002-7125-8952
  • Enrique Márquez-Ríos Universidad de Sonora, Departamento de Investigación y Posgrado den Alimentos, Rosales y Niños Héroes S/N, 83000, Hermosillo, Son, México https://orcid.org/0000-0001-7850-4960
  • José de Jesús Ornelas-Paz Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Cuauhtémoc. Av. Río Conchos S/N, Parque Industrial, C.P. 31570, Cd. Cuauhtémoc, Chihuahua, México
  • Carmen Lizette Del-Toro-Sánchez Universidad de Sonora, Departamento de Investigación y Posgrado den Alimentos, Rosales y Niños Héroes S/N, 83000, Hermosillo, Son, México https://orcid.org/0000-0001-7029-7741
  • Francisco Javier Wong-Corral Universidad de Sonora, Departamento de Investigación y Posgrado den Alimentos, Rosales y Niños Héroes S/N, 83000, Hermosillo, Son, México https://orcid.org/0000-0003-2851-3580
  • Guadalupe Miroslava Suárez-Jiménez Universidad de Sonora, Departamento de Investigación y Posgrado den Alimentos, Rosales y Niños Héroes S/N, 83000, Hermosillo, Son, México https://orcid.org/0000-0002-6059-5099
  • Germán Eduardo Dévora-Isiordia Instituto Tecnológico de Sonora, Departamento de Ciencias del Agua y Medio Ambiente. 5 de febrero 818 Sur, C.P. 85000, Cd. Obregón, Sonora, México https://orcid.org/0000-0002-0190-0794
  • Raúl Holguin-Soto Instituto Tecnológico de Sonora, Departamento de Biotecnología y Ciencias Alimentarias. 5 de febrero 818 Sur, C.P. 85000, Cd. Obregón, Sonora, Méxic https://orcid.org/0000-0003-1336-8704

DOI:

https://doi.org/10.18633/biotecnia.v22i2.1247

Palabras clave:

Microencapsulación, coacervación, antioxidantes, Ficus carica

Resumen

Se realizó la microencapsulación por coacervación compleja de extractos de higo en tres etapas de madurez, utilizando dos complejos: Proteína de Soya Aislada con Goma Arábiga (SPI/GA) y Gelatina con Goma Arábiga (G/GA) como material de pared. La estabilidad de las cápsulas se evalúo en términos de la presencia de compuestos fenólicos, la actividad antioxidante mediante las técnicas de ABTS y bioensayo de hemólisis. El rendimiento fue mayor en el complejo de G/GA, con valores superiores al 60 %. Este complejo también logró una mejor formación de perlas de acuerdo a su morfología. Ambos complejos (SPI/GA y G/GA) mostraron estabilidad en términos de capacidad antioxidante, por lo tanto, el proceso de coacervación compleja es una técnica capaz de retener los compuestos fenólicos presentes en el higo.

ABSTRACT

Microencapsulation was performed by complex coacervation of fig’s extracts in three stages of maturity, using two complexes: isolated soy protein with arabic gum (ISP/AG) and gelatin with arabic gum (G/ AG) as wall material. The stability of the capsules was evaluated in terms of the presence of phenolic compounds, the antioxidant activity using the techniques by ABTS and hemolysis bioassay. In addition, we obtained the yield percentage and morphology of the microcapsules. The yield was higher in the G/AG complex, with values greater than 60 %. This complex also has a better pearl formation according to its morphology. Both complexes (G/AG. ISP/AG and G/AG) have stability in terms of antioxidant capacity; therefore, the complex coacervation process is a technique capable to retain phenolic compounds present in fig.

Citas

Akhavan, S., Mahdi, S., Assadpoor, E., Dehnad, D. 2016. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules. 85: 379-385.

Belščak, A., Stojanović, R., Manojlović, V., Komes, D., Juranović, I., Nedović, V., Bugarski, B. 2011. Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Research International. 44: 1094-1101.

Betz, M., Steiner, B., Schant, M., Oidtmann, J., Mader, K., Richling, E., Kulozik, U. 2012. Antioxidant capacity of bilberry extract microencapsulated in whey protein hydrogels. Food Research International. 47: 51-57.

Caliskan, O., Aytekin, A. 2011. Phytochemical and antioxidant properties of selected fig (Ficus carica L.) accessions from the eastern Mediterranean region of Turkey. Scientia Horticulturae. 128: 473-478.

Cam, M., CihatIcyer, N.C., Erdogan, F. 2014. Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT- Food Science and Technology. 55: 117-123.

Carvalho, L., Morales, J., Perez, J., Perez, I. 2015. Hemolytic activity and solubilizing capacity of raffinose and melezitose fatty acid monoesters prepared by enzymatic synthesis. European Journal of Pharmaceutics and Biopharmaceutics. 92: 139-145.

Chidambaram, V., Ali, K., Claira, A., Wan, A. 2016. Microencapsulation of flexirubin-type pigment by spray drying: Characterization and antioxidant activity. International Biodeterioration & Biodegradation. 1: 1-7.

Daza, L.D., Herrera, A.V., Murillo, E., Méndez, J.J. 2014. Evaluación de propiedades antioxidantes de parte comestible y no comestible de pitahaya, uchuva y mangostino. Biotecnología en el Sector Agropecuario y Agroindustrial. 12: 98-105.

FAO, Organización de las Naciones Unidas para la Agricultura y la Alimentación. Manual para la preparación y venta de frutas y hortalizas. Boletín de Servicios Agrícolas de la FAO. (Consultado 20 de mayo de 2019) 2003. Disponible en http://www.fao.org/.

Fernández, M., Ortiz, W., Pereañez, J., Martínez, D. 2010. Evaluación de las propiedades antiofídicas del extracto etanolico y fracciones obtenidas Renealmia alpinia (Rottb) Mass (Zingiberaceae) cultivada In vitro. Revista de la Facultad de Química Farmacéutica. 17: 75-82.

Fisher, G., Martinez, O. 1999. Calidad y madurez de la Uchuva (Physalis peruviana L.) en relación con la coloración del fruto. Agronomía Colombiana. 16: 35-39.

García, J.S., Campas, O.N., López, J., Sánchez, D.I., Cantú, E.U., Rodríguez, R. 2016. Microencapsulation of sulforaphane from broccoli seed extracts by gelatin/gum arabic and gelatin/pectin complexes. Food Chemistry. 201: 94-100.

Granato, D., Shahidi, F., Wrolstad, R., Kilmartin, P., Melton, L.D., Hidalgo, F.J., Miyashita, K., Van-Camp, J., Alasalvar, C., Ismail, A.B., Elmore, S., Birch, G.G., Charalampopoulos, D., Astley, S.B., Pegg, R., Zhou, P., Finglas, P. 2018. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods?. Food Chemistry. 264: 471-475.

Gupta, C., Chawla, P., Arora, S., Tomar, S.K., Singh, A.K. 2015. Iron microencapsulation with blend of gum arabic, maltodextrin and modified starch using modified solvent evaporation method e Milk fortification. Food Hydrocolloids. 43: 622-628.

Halliwell, B. 2012. Free radicals and antioxidants: updating a personal view. Nutrition Reviews. 70(5): 257-265.

Ifeduba, E., Akoh, C. 2015. Microencapsulation of stearidonic acid soybean oil in complex coacervates modified for enhanced stability. Food Hydrocolloids. 51: 136-145.

Junxia, X., Haiyan, Y., Jian, Y. 2011. Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum arabic. Food Chemistry. 125: 1267-1272.

Lu, J., Jin, Y., Liu, G., Zhu, N., Gui, M., Yu, A., Li, X. 2010. Flavonoids from the leaves of Actinidia kolomikta. Chemistry of Natural Compounds. 46(2): 205-208.

Magalhäes, A.S., Silva, B.M., Pereira, J.A., Andrade, P.B., Valentäo, P., Carvalho, M. 2009. Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Food and Chemistry Toxicology. 47(6): 1372-1377.

Manaargadoo, M., Ali, A., Pougnas, J., Perrin, C. 2016. Hemolysis by surfactants — A review. Advances in Colloid and Interface Science. 228: 1-16.

Martins, N., Ferreira, I.C., Barros, L., Carvalho, A.M., Henriques, M., Silva, S. 2015. Plants used in folk medicine: The potential of their hydromethanolic extracts against Candida species. Industrial Crops and Products. 66: 62-67.

Mathias-Rettig, K., Ah-Hen, K. 2014. El color en los alimentos un criterio de calidad medible. Agro Sur, 42(2): 57-66.

Montoya, C., Hernandez, J., Arias, M., Medina, M., Rojano, B. 2012. Changes in the Antioxidant Activity in Mortino Fruits (Vaccinium meridionale Sw.) during development and ripening. Revista de la Facultad Nacional de Agronomia de Medellin. 65: 6487-6495.

Nesterenko, A., Alric, I., Violleau, F., Silvestre, F., Durrieu, V. 2014. The effect of vegetable protein modifications on the microencapsulation process. Food Hydrocolloids. 41: 95- 102.

Nori, M.P., Favaro C.S., Alencar, S.M., Thomazini M., De Camargo J.C., Contreras, C.J. 2011. Microencapsulation of propolis extract by complex coacervation. LWT - Food Science and Technology. 44: 429-435.

Özdemir, K.S., Gokmen, V. 2015. Effect of microencapsulation on the reactivity of ascorbic acid, sodium chloride and vanillin during heating. Journal of Food Engineering. 167: 204-209.

Paini, M., Aliakbarian, B., Casazza, A.A., Lagazzo, A., Botter, R., Perego, P. 2015. Microencapsulation of phenolic compounds from olive pomace using spray drying: A study of operative parameters. LWT - Food Science and Technology. 62: 177-186.

Perez, R., Perez, S., Zavala, M., Salazar, M. 1995. Anti-inflammatory activity of the bark of Hippocratea excelsa. Journal of Ethnopharmacology. 47: 85-90.

Pulido, A., Beristain, C.I. 2010. Encapsulación de acido ascórbico mediante secado por aspersión, utilizando quitosano como material de pared. Revista Mexicana de Ingeniería Química. 9: 189-195.

Qv, X.Y., Zeng, Z.P., Jiang, J.G. 2011. Preparation of lutein microencapsulation by complex coacervation method and its physicochemical properties and stability. Food Hydrocolloids. 25: 1596-1603.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26: 1231-1237.

Rocha, G.A., Bozza, F.T., Thomazini, M., Bolini, H.M., Fávaro, C.S. 2013. Microencapsulation of aspartame by double emulsion followed by complex coacervation to provide protection and prolong sweetness. Food Chemistry. 139: 72-78.

Santos, M.G., Bozza, F.T., Thomazini, M., Favaro, C.S. 2015. Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chemistry. 171: 32-39.

SIAP. Servicio de Informacion Agroalimentaria y Pesquera. (Consultado 26 de julio de 2019) 2014. Disponible en http://www.siap.gob.mx/.

Silva-Beltrán, N.P., Ruiz-Cruz, S., Cira-Chávez, L.A., Estrada- Alvarado, M.I., Ornelas-Paz, J.J., López-Mata, M.A., Del-Toro-Sánchez, C.L., Ayala-Zavala, J.F., Márquez -Ríos, E. 2015. Total phenolic, flavonoid, tomatine and tomatidine contents and antioxidant and antimicrobial activities of extracts of tomato plant. International Journal of Analytical Chemistry. Article ID 284071 10 paginas.

Silva, P.I., Stringheta, P.C., Teofilo, R.F., Nolasco, I.R. 2013. Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering. 117: 538-544.

Solomon, A., Golubowicz, S., Yablowicz, Z., Grossman, S., Bergman, M., Gottlieb, H.E., Altman, A., Kerem, Z., Flaishman, M.A. 2006. Antioxidant activities and anthocyanin content of fresh fruits of common Fig (Ficus carica L.). Journal of Agricultural and Food Chemistry. 54: 7717-7723.

Sultana, B., Anwar, F., Ashra, M. 2009. Effect of extraction solvent/ technique on the antioxidant activity of selected medicinal plant extracts. Molecules. 14: 2167-2180.

Thakur, P., Chawla, R., Narula, A., Goel, R., Arora, R., Sharma, R.K. 2016. Anti-hemolytic, hemagglutination inhibition and bacterial membrane disruptive properties of selected herbal extracts attenuate virulence of Carbapenem Resistant Escherichia coli. Microbial Pathogenesis. 95: 133-141.

Torres, R., Montes., E.J., Pérez O.A., Andrade, R.D. 2013. Relación del color y del estado de madurez con las propiedades fisicoquímicas de frutas tropicales. Información Tecnológica. 24: 51-56.

Veberic, R., Colaric, M., Stampar, F. 2008. Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food chemistry. 106: 153-157.

Venil, C.K., Khasim, A.R., Aruldass, C.A., Ahmad, W.A. 2016. Microencapsulation of flexirubin-type pigment by spray drying: Characterization and antioxidant activity. International Biodeterioration & Biodegradation. 1: 1-7.

Villalobos, M.C., Serradilla, M.J., Martin, A., Ruiz, S., Pereira, C., Cordoba, M.G. 2016. Synergism of defatted soybean meal extract and modified atmosphere packaging to preserve the quality of figs (Ficus carica L.). Postharvest Biology and Technology. 111: 264-273.

Viuda, M., Barber X., Pérez, J.A., Fernández, J. 2015. Assessment of chemical, physico- chemical, techno- functional and antioxidant properties of fig (Ficus carica) powder coproducts. Industrial Crops and Products. 69: 472-479.

Wang, B., Adhikari, B., Barrow, C.J. 2014. Optimisation of the microencapsulation of tuna oil in gelatin–sodium hexametaphosphate using complex coacervation. Food Chemistry. 158: 358-365.

Wang, J., Li, H., Chen, Z., Liu, W., Chen, H. 2016. Characterization and storage properties of a new microencapsulation of tea polyphenols. Industrial Crops and Products. 89: 152-156.

Wang, G., Lei, Z., Zhong, Q., Wu, W., Zhang, H., Min, T., Wu, H., Lai, F. 2017. Enrichment of caffeic acid in peanut sprouts and evaluation of its In vitro effectiveness against oxidative stress-induced erythrocyte hemolysis. Food Chemistry. 217: 332-341.

Zhang, K., Zhang, H., Hu, X., Bao, S., Huang, H. 2012. Synthesis and release studies of microalgal oil-containing microcapsules prepared by complex coacervation. Colloids and Surfaces B: Biointerfaces. 89: 61-66.

Zhang, J., Hou, X., Ahmad, H., Zhang, H., Zhang, L., Wang, T. 2014. Assessment of free radicals scavenging activity of seven natural pigments and protective effects in AAPH-challenged chicken erythrocytes. Food Chemistry. 145: 57-65.

Zheng, L., Dong, H., Su, G., Zhao, Q., Zhao, M. 2016. Radical scavenging activities of Tyr-, Trp-, Cys- and Met-Gly and their protective effects against AAPH-induced oxidative damage in human erythrocytes. Food Chemistry. 197: 807-813.

Descargas

Publicado

2020-03-21

Número

Sección

Artículos