Inducción de cambios de tamaño, color y en cutícula en bayas de uva de mesa por medio de bioreguladores

Cambios en bayas de uvas de mesa

Autores/as

  • LC González-García CENTRO DE INVESTIGACIÓN EN ALIMENTACIÓN Y DESARROLLO, A.C. https://orcid.org/0009-0000-9266-3888
  • A Sánchez-Estrada Centro de Investigación en Alimentación y Desarrollo, A.C. https://orcid.org/0000-0001-8298-5269
  • JN Mercado-Ruiz CIAD, A.C. https://orcid.org/0000-0001-5190-2598
  • R Báez-Sañudo Sistemas de gestión de la inocuidad y calidad. Manejo Postcosecha de Frutas y Hortalizas.
  • A González-León Centro de Investigación en Alimentación y Desarrollo, A.C.

DOI:

https://doi.org/10.18633/biotecnia.v25i2.1874

Palabras clave:

Flame Seedless, CIRG, antocianinas, ceras cuticulares, cutícula

Resumen

La irregularidad del color y el bajo calibre de las bayas en la uva de mesa en el desierto Sonorense representan un reto para su exportación. Se evaluó el efecto de la aplicación de bioreguladores en el envero sobre el tamaño, peso, color y cambios cuticulares en la baya de uva de mesa cv. “Flame Seedless”. Se diseñaron 8 tratamientos: TEST (Testigo), ETH1 (Ethrel 100 mg L-1), ETH2 (Ethrel 250 mg L-1), AS (ácido salicílico 100 mg L-1), MEL (melatonina 25 mg L-1) y la combinación de ETH2+AS, ETH2+MEL y AS+MEL. El mayor peso se obtuvo en bayas tratadas con MEL, ETH2+MEL y AS+MEL (4.75, 5.46 y 5.14 respectivamente), mientras el testigo alcanzó 3.75 g; se observó un comportamiento similar en tamaño, alcanzando un calibre extra en los tratamientos MEL y combinaciones. El índice de color (CIRG) más alto se obtuvo en las bayas tratadas con ETH con valores superiores a 2.0, mientras que los otros tratamientos fueron menores a este valor, ningún tratamiento alcanzó el CIRG óptimo (4-5). En los parámetros cuticulares, no se observaron diferencias (p ≤ 0.05), a excepción del contenido de ceras epicuticulares, con mayor contenido en bayas testigo absoluto (0.64 mg cm-2).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aghdam, M.S. y Fard, J.R. 2017. Melatonin treatment attenuates postharvest decay and maintainsnutritional quality of strawberry fruits (Fragaria × anannasa cv. Selva) by enhancing GABA shunt activity. Food Chemistry. 221: 1650–1657. https://doi.org/10.1016/j.foodchem.2016.10.123

Alenazi, M.M., Shafiq, M., Alobeed R.S., Aldson A.A., Abbasi N.A., Ali I., Mubushar M. y Javed I. 2019. Application of abscisic acid at veraison improves red pigmentation and accumulation of dietary antioxidants in red table grapes cv. Red Globe at harvest. Scientia Horticulturae. 257: 108–672. https://doi.org/10.1016/j.scienta.2019.108672

Arnao, M.B. y Hernández-Ruiz, J. 2019. Melatonin as a chemical substance or as phytomelatonin rich-extracts for use as plant protector and/or biostimulant in accordance with EC legislation. Agronomy. 9: 570. https://doi.org/10.3390/agronomy9100570

Báez-Sañudo, R., Tadeo, F., Primo-Millo, E. y Zacarias, L. 1993. Physiological and ultrastructural changes during the ripening and senescente of clementine mandarin. Acta Horticulturae. 343: 18-24. https://doi.org/10.17660/ActaHortic.1993.343.4

Báez-Sañudo, R., Mercado-Ruiz, J.N. González-García, L. E., Sánchez-Estrada, A., González –León, A. 2021. Cambios en las antocianinas y el etileno residual de uva de Mesa tratada con promotores del color. Revista Iberoaméricana de Postcosecha. 2: 166-177. : https://www.redalyc.org/articulo.oa?id=81369610004

Boss, P.K. y Davies, C. 2009. Molecular biology of anthocyanin accumulation in grape berries. En: Grapevine molecular physiology & biotechnology, 2da ed. Roubelakis-Angelakis K.A (ed.), 265-266 pp. Springer Science Business Media B.V., Dodercht.

Buschhaus, C., y Jetter, R. 2011. Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces?. Journal of Experimental Botany. 62: 841-853. https://doi.org/10.1093/jxb/erq366

Carbonell-Bejerano, P. y Martínez-Zapater, J.M. 2013. Estructura y composición de la uva y su contribución al vino. ACE Revista de Enología. [Consultado 15 junio 2021]. Disponible en: https://www.acenologia.com/estructura_composicion_vino_cienc1013/.

Carreño, J., Martínez, A., Almela, L. y Fernández-López, J.A. 1995. Proposal of an index for the objective evaluation of the colour of red table grapes. Food Research International. 28(4): 373-377. https://doi.org/10.1016/0963-9969(95)00008-A

Carreño, J., Martínez, A., Almela L. y Fernández-López, J.A. 1996. Measuring the color of table grapes. Color Research and Application. 21: 50-54. https://doi.org/10.1002/(SICI)1520-6378(199602)21:1<50::AID-COL5>3.0.CO;2-4

Champa, W. H., Gill, M. I. S., Mahajan, B. V. C., y Arora, N. K. 2014. Pre-harvest treatments of brassinosteroids on improving quality of table grapes (Vitis vinifera L.) cv. Flame Seedles. International Journal of Agricultural Sciences and Veterinary Medicine, 2: 97-104.

Crupi, P., Antonacci, D., Savino, M., Genghi, R., Perniola, R. y Coletta, A. 2016. Girdling and gibberellic acid effects on yield and quality of a seedless red table grape for saving irrigation water supply. European Journal of Agronomy. 80: 21–31. https://doi.org/10.1016/j.eja.2016.06.015

Deluc, L.G., Quilici, D.R., Decendit, A., Grimplet, J., Wheatley, M.D. Schlauch, K.A., Mérillon, J.M., Cushman, J.C. y Cramer, G.R. 2009. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics. 10: 212–233. https://doi.org/10.1186/1471-2164-10-212

Fan, J., Xie, Y., Zhang, Z. y Chen, L. 2018. A review: Melatonin: A Multifunctional Factor in Plants. International Journal of Molecular Sciences.19: 1528. https://doi.org/10.3390/ijms19051528

Ferrara, G., Mazzeo, A., Matarrese, A.M.S., Pacucci, C., Pacifico, A., Gambacorta, G., Faccia, M., Trani, A., Gallo, V., Cafagna, I. y Mastrorilli, P. 2013. Application of abscisic acid (S-ABA) to ‘crimson seedless’ grape berries in a Mediterranean climate: Effects on color, chemical characteristics, metabolic profile, and S-ABA concentration. Journal Plant Growth Regulation. 32: 491–505. https://doi.org/10.1007/s00344-012-9316-2

Freeman, B., Albrigo, L.G. y Biggs, R.H. 1979. Ultrastructure and chemistry of cuticular waxes of developing citrus leaves and fruit (Oranges, tangerines, lemons). Journal of the American Society for Horticultural Science. 104(6): 801-808.

Gámez-Elizalde, M., Mercado-Ruiz, J.N., García-Robles, J.M. y Báez-Sañudo, R. 2020. Interacción del ácido salicílico y el pH en la coloración de uva de mesa “Flame Seedless”““Flame Seedless””. Revista Iberoamericana de Tecnología Postcosecha. 21: 68–77. https://www.redalyc.org/articulo.oa?id=81363356006

Gao, H., Lu, Z., Yang, Y., Wang, D., Yang, T., Cao, M. y Cao, W. 2018. Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemestry. 245: 659–666. https://doi.org/10.1016/j.foodchem.2017.10.008

Geyer, U. y Schönherr, J. 1990. The effect of the environment on the permeability and composition of citrus leaf cuticles. Water permeability of isolated cuticular membranes. Planta. 180: 147-153.

Giménez, M.J., Valverde, J.M, Valero, D., Guillén, F., Martínez-Romero, D., Serrano, M. y Castillo, S. 2014. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments. Food Chemistry. 160:226–232. https://doi.org/10.1016/j.foodchem.2014.03.107

Habibi, G. 2017. Impact of salicylic acid on phenolic metabolism and antioxidant activity in four grape cultivars during cold storage. International Journal Horticultural Science and Technology. 4: 217–228. https://doi.org/10.22059/ijhst.2017.229916.185

Hueso, J.J. 2012. Manejo y técnicas de cultivo en uva de mesa apirena. Fundación Cajamar. España. 27 pp.

Jetter, R., Kuns,t L. y Samuels, L. 2006. Composition of plant cuticular waxes. In: Biology of the Plant Cuticle. Riederer M. y Müller C. (eds). Julius-von-Sachs-Institut, für Biowissenschaften Universität Würzburg, Germany. 145-175 pp.

Kaur, M, Gill, M.I.S. y Arora, N.K. 2013. Effect of pre-harvest treatment on yield, maturity and quality of “Flame Seedless”““Flame Seedless”” grape (Vitis vinifera L.). Journal of Horticultural Sciences. 8: 35–40.

Leguizamón, G., González-León, A., Sotero-Mundo, R.R., Islas-Osuna, M.A., García-Robles, J.M., García-Orozco, K., Carvallo, T. y Báez-Sañudo, R. 2008. Efecto del sombreado de racimos sobre el color y la capacidad antioxidante en uvas de mesa (Vitis vinifera L.). Revista Iberoamericana Tecnología Postcosecha. 9: 138-147.

Leguizamón, G.M., González-León, A., Sotelo-Mundo, R., Islas-Osuna, M., Bringas-Taddei ,E. García-Robles, M. y Báez-Sañudo, R. 2008. Efecto de luminosidad y temperatura sobre color y parámetros de calidad en uvas rojas para mesa (Vitis vinifera L.). Fitotecnia Mexicana. 31: 7-17. https://doi.org/10.35196/rfm.2008.1.7

Liu, J., Yue, R., Si, M., Wu, M., Cong, L., Zhai, R., Yang, C., Wang, Z., Ma, F. y Xu, L. 2019. Effects of exogenous application of melatonin on quality and sugar metabolism in ‘Zaosu’ pear fruit. Journal of Plant Growth Regulation. 38: 1161-1169. https://doi.org/10.1007/s00344-019-09921-0

Meng, J.F., Xu, T.F., Song, C.Z., Yu, Y., Hu, F., Zhang, L., Zhang, Z.W. y Xi, Z.M. 2015. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Food Chemistry. 185: 127-134. https://doi.org/10.1016/j.foodchem.2015.03.140

Miranda, S., Vilches, P., Suazo, M., Pavez, L., García, K., Méndez, M.A., González, M., Meisel, L.A., Defilippi, B.G. and Del Pozo, T., 2020. Melatonin triggers metabolic and gene expression changes leading to improved quality traits of two sweet cherry cultivars during cold storage. Food Chemistry. 319: 126360. https://doi.org/10.1016/j.foodchem.2020.126360

Movahed, N., Pastore, C., Cellini, A., Allegro, G., Valentini, G., Zenoni, S., Cavallini, E., D’Incà ,E., Tornielli, G.B. y Filippetti, I. 2016. The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. Journal Plant Research. 129: 513–526. https://doi.org/10.1007/s10265-016-0786-3

NMX-FF-026-SCFI-2006. Productos Alimenticios no Industrializados para Uso Humano – Fruta Fresca– Uva de Mesa (Vitis Vinifera L.) – Especificaciones (Cancela A La Nmx-Ff- 026-1994-Scfi). [Consultado 14 de mayo de 2018] 2006. Disponible en: https://caisatech.net/uploads/XXI_2_MXD_C107_NMX-FF-026-SCFI-2006_R0_7ABR2006.pdf.

Ochoa-Villarreal, M., Vargas-Arispuro, I., Islas-Osuna, M.A., González-Aguilar, G. y Martínez-Téllez, M.A. 2011. Pectin-derived oligosaccharides increase color and anthocyanin content in “Flame Seedless” “Flame Seedless” grapes. Journal of the Science of Food and Agriculture. 91: 1928–1930. https://doi.org/10.1002/jsfa.4412

Oraei, M., Panahirad, S., Zaare-Nahand,i F. y Gohari, G. 2019. Pre-veraison treatment of salicylic acid to enhance anthocyanin content of grape (Vitis vinifera L.) berries. Journal of the Science of Food Agriculture. 99: 5946–5952. https://doi.org/10.1002/jsfa.9869

Pensec, F., Paczkowski, C., Grabarczyk, M., Wózniak, A., Bérnard-Gellon, M., Bertsch, C., Chong J. y Szakiel A. 2014. Changes in the triterpenoid content of cuticular waxes during fruit ripening of eight grape (Vitis vinifera L.) cultivars grown in the upper Rhine Valley. Journal of Agriculture and Food Chemestry. 62: 7998−8007. https://doi.org/10.1021/jf502033s

Peppi, M.C. 2004. Color development studies in table grapes. MS Thesis. University of California, Davis.

Peppi, M.C., Fidelibus, M.W. y Dokoozlian, D. 2006. Abscisic acid application timing and concentration affect firmness, pigmentation, and color of Flame Seedless grapes. Horscience. 41: 1440–1445. https://doi.org/10.21273/HORTSCI.41.6.1440

Riederer, M. y Schneider, G. 1990. The effect of enviroment in the permeability and composition of citrus leaf cuticles II. Composition of soluble cuticular lipids and correlation with transport properties. Planta. 180: 154-165.

Schönherr, J. y Rieder, M. 1986. Plant cuticles sorb lipophylic compounds during enzimatic isolation. Plant Cell and Enviroment. 9: 459-466. https://doi.org/10.1111/j.1365-3040.1986.tb01761.x

Seymour, G.B., Ostergaard, L., Chapman, L.H., Knapp, S. y Martin, C. 2013. Fruit development and ripening. Annual Review Plant Biol. 64: 219-41. 10.1146/annurev-arplant-050312-120057

Sun, Q., Zhang, N., Wang, J., Cao, Y., Li, X., Zhang, H., Zhang, L., Tan, D. y Guo, Y. 2016. A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. Journal of Pineal Research. 61:138-153. https://doi.org/10.1111/jpi.12315

Tafolla-Arellano, J.C., González-León, A., Tiznado-Hernández, M.E. Zacarías-García, L. y Báez Sañudo, R. 2013. Composición, Fisiología y Biosíntesis de la Cutícula en Plantas. Revista Fitotecnia Mexicana. 36(1): 3-12.

Trivedi, P., Nguyen, N., Hykkerud, A.L., Häggman, H., Martinussen, I., Jaakol, L. y Karppinen, K. 2019. Developmental and environmental regulation of cuticular wax biosynthesis in fleshy fruits. Front. Plant Science. 10: 431. https://doi.org/10.3389/fpls.2019.00431

Wu, C., Cao, S., Xie, K., Chi, Z., Wang, J., Wang, H., Wei, Y., Shao, X., Zhang, C., Xu, F. and Gao, H., 2021. Melatonin delays yellowing of broccoli during storage by regulating chlorophyll catabolism and maintaining chloroplast ultrastructure. Postharvest Biology and Technology 172: 111378. https://doi.org/10.1016/j.postharvbio.2020.111378

Xu, L., Yue, Q., Xiang, G., Bian, F. y Yao, Y. 2018. Melatonin promotes ripening of grape berry via increasing the levels of ABA, H2O2, and particularly ethylene. Horticulturae Research. 5:41. https://doi.org/10.1038/s41438-018-0045-y

Yadav, N., Singh, A.K., Emran, T.B., Chaudhary, R.G., Sharma, R., Sharma, S. and Barman, K., 2022. Salicylic Acid Treatment Reduces Lipid Peroxidation and Chlorophyll Degradation and Preserves Quality Attributes of Pointed Gourd Fruit. Journal of Food Quality, 2022: D 2090562. https://doi.org/10.1155/2022/2090562

Yang, M., Luo, Z., Gao, S., Belwal, T., Wang, L., Qi, M., Ban, Z., Wu, B., Wang, F. y Li, L. 2021. The chemical composition and potential role of epicuticular and intracuticular wax in four cultivars of table grapes. Postharvest Biology and Technology. 173: 111430. https://doi.org/10.1016/j.postharvbio.2020.111430

Zhang, N., Sun, Q., Li, H., Li, X., Cao, Y., Zhang, H., Li, S., Zhang, L., Qi, Y., Ren, S., Zhao, B. y Guo1, Y. 2016. Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Frontiers Plant Science.7: 197. https://doi.org/10.3389/fpls.2016.00197

Publicado

2023-04-21

Cómo citar

González García, L. del C., Sánchez Estrada, A., Mercado Ruiz, J. N., Báez Sañudo, R. ., & González León, A. (2023). Inducción de cambios de tamaño, color y en cutícula en bayas de uva de mesa por medio de bioreguladores: Cambios en bayas de uvas de mesa. Biotecnia, 25(2), 113–119. https://doi.org/10.18633/biotecnia.v25i2.1874

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.