Bioregulators induction changes in size, color and cuticle of table grapes berries
Table grapes berries changes
DOI:
https://doi.org/10.18633/biotecnia.v25i2.1874Keywords:
Flame Seedless, CIRG, anthocyanins, cuticular waxes, cuticleAbstract
The irregularity of the color and the small size of the berries in the table grapes in the Sonoran Desert represent a challenge for their export. The effects of the application of bioregulators at veraison were evaluated on the size, weight, color and cuticle changes in the berry of table grape cv. “Flame Seedless”. 8 treatments: TEST (Testigo absoluto), ETH1 (Ethrel 100 mg L-1), ETH2 (Ethrel 250 mg L-1), AS (salicylic acid 100 mg L-1), MEL (melatonin 25 mg L-1) and the combination of ETH2+AS, ETH2+MEL and AS+MEL. A higher weight was obtained in the berries treated with MEL, ETH2+MEL and AS+MEL (4.75, 5.46 and 5.14 respectively), while the control weighed only 3.75 g; similar behavior was presented in the size of the berries in which they reached a superior caliber with the treatments with MEL and combinations. The highest color index (CIRG) was obtained in the berries treated with ETH with values greater than 2.0 while the other treatments were lower than this value, no treatment reached the optimal CIRG (4-5). In the cuticular parameters, no differences were observed (p ≤ 0.05), except for the epicuticular wax content, with a higher content in absolute control berries (0.64 mg cm-2).
Downloads
References
Aghdam, M.S. y Fard, J.R. 2017. Melatonin treatment attenuates postharvest decay and maintainsnutritional quality of strawberry fruits (Fragaria × anannasa cv. Selva) by enhancing GABA shunt activity. Food Chemistry. 221: 1650–1657. https://doi.org/10.1016/j.foodchem.2016.10.123
Alenazi, M.M., Shafiq, M., Alobeed R.S., Aldson A.A., Abbasi N.A., Ali I., Mubushar M. y Javed I. 2019. Application of abscisic acid at veraison improves red pigmentation and accumulation of dietary antioxidants in red table grapes cv. Red Globe at harvest. Scientia Horticulturae. 257: 108–672. https://doi.org/10.1016/j.scienta.2019.108672
Arnao, M.B. y Hernández-Ruiz, J. 2019. Melatonin as a chemical substance or as phytomelatonin rich-extracts for use as plant protector and/or biostimulant in accordance with EC legislation. Agronomy. 9: 570. https://doi.org/10.3390/agronomy9100570
Báez-Sañudo, R., Tadeo, F., Primo-Millo, E. y Zacarias, L. 1993. Physiological and ultrastructural changes during the ripening and senescente of clementine mandarin. Acta Horticulturae. 343: 18-24. https://doi.org/10.17660/ActaHortic.1993.343.4
Báez-Sañudo, R., Mercado-Ruiz, J.N. González-García, L. E., Sánchez-Estrada, A., González –León, A. 2021. Cambios en las antocianinas y el etileno residual de uva de Mesa tratada con promotores del color. Revista Iberoaméricana de Postcosecha. 2: 166-177. : https://www.redalyc.org/articulo.oa?id=81369610004
Boss, P.K. y Davies, C. 2009. Molecular biology of anthocyanin accumulation in grape berries. En: Grapevine molecular physiology & biotechnology, 2da ed. Roubelakis-Angelakis K.A (ed.), 265-266 pp. Springer Science Business Media B.V., Dodercht.
Buschhaus, C., y Jetter, R. 2011. Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces?. Journal of Experimental Botany. 62: 841-853. https://doi.org/10.1093/jxb/erq366
Carbonell-Bejerano, P. y Martínez-Zapater, J.M. 2013. Estructura y composición de la uva y su contribución al vino. ACE Revista de Enología. [Consultado 15 junio 2021]. Disponible en: https://www.acenologia.com/estructura_composicion_vino_cienc1013/.
Carreño, J., Martínez, A., Almela, L. y Fernández-López, J.A. 1995. Proposal of an index for the objective evaluation of the colour of red table grapes. Food Research International. 28(4): 373-377. https://doi.org/10.1016/0963-9969(95)00008-A
Carreño, J., Martínez, A., Almela L. y Fernández-López, J.A. 1996. Measuring the color of table grapes. Color Research and Application. 21: 50-54. https://doi.org/10.1002/(SICI)1520-6378(199602)21:1<50::AID-COL5>3.0.CO;2-4
Champa, W. H., Gill, M. I. S., Mahajan, B. V. C., y Arora, N. K. 2014. Pre-harvest treatments of brassinosteroids on improving quality of table grapes (Vitis vinifera L.) cv. Flame Seedles. International Journal of Agricultural Sciences and Veterinary Medicine, 2: 97-104.
Crupi, P., Antonacci, D., Savino, M., Genghi, R., Perniola, R. y Coletta, A. 2016. Girdling and gibberellic acid effects on yield and quality of a seedless red table grape for saving irrigation water supply. European Journal of Agronomy. 80: 21–31. https://doi.org/10.1016/j.eja.2016.06.015
Deluc, L.G., Quilici, D.R., Decendit, A., Grimplet, J., Wheatley, M.D. Schlauch, K.A., Mérillon, J.M., Cushman, J.C. y Cramer, G.R. 2009. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics. 10: 212–233. https://doi.org/10.1186/1471-2164-10-212
Fan, J., Xie, Y., Zhang, Z. y Chen, L. 2018. A review: Melatonin: A Multifunctional Factor in Plants. International Journal of Molecular Sciences.19: 1528. https://doi.org/10.3390/ijms19051528
Ferrara, G., Mazzeo, A., Matarrese, A.M.S., Pacucci, C., Pacifico, A., Gambacorta, G., Faccia, M., Trani, A., Gallo, V., Cafagna, I. y Mastrorilli, P. 2013. Application of abscisic acid (S-ABA) to ‘crimson seedless’ grape berries in a Mediterranean climate: Effects on color, chemical characteristics, metabolic profile, and S-ABA concentration. Journal Plant Growth Regulation. 32: 491–505. https://doi.org/10.1007/s00344-012-9316-2
Freeman, B., Albrigo, L.G. y Biggs, R.H. 1979. Ultrastructure and chemistry of cuticular waxes of developing citrus leaves and fruit (Oranges, tangerines, lemons). Journal of the American Society for Horticultural Science. 104(6): 801-808.
Gámez-Elizalde, M., Mercado-Ruiz, J.N., García-Robles, J.M. y Báez-Sañudo, R. 2020. Interacción del ácido salicílico y el pH en la coloración de uva de mesa “Flame Seedless”““Flame Seedless””. Revista Iberoamericana de Tecnología Postcosecha. 21: 68–77. https://www.redalyc.org/articulo.oa?id=81363356006
Gao, H., Lu, Z., Yang, Y., Wang, D., Yang, T., Cao, M. y Cao, W. 2018. Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemestry. 245: 659–666. https://doi.org/10.1016/j.foodchem.2017.10.008
Geyer, U. y Schönherr, J. 1990. The effect of the environment on the permeability and composition of citrus leaf cuticles. Water permeability of isolated cuticular membranes. Planta. 180: 147-153.
Giménez, M.J., Valverde, J.M, Valero, D., Guillén, F., Martínez-Romero, D., Serrano, M. y Castillo, S. 2014. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments. Food Chemistry. 160:226–232. https://doi.org/10.1016/j.foodchem.2014.03.107
Habibi, G. 2017. Impact of salicylic acid on phenolic metabolism and antioxidant activity in four grape cultivars during cold storage. International Journal Horticultural Science and Technology. 4: 217–228. https://doi.org/10.22059/ijhst.2017.229916.185
Hueso, J.J. 2012. Manejo y técnicas de cultivo en uva de mesa apirena. Fundación Cajamar. España. 27 pp.
Jetter, R., Kuns,t L. y Samuels, L. 2006. Composition of plant cuticular waxes. In: Biology of the Plant Cuticle. Riederer M. y Müller C. (eds). Julius-von-Sachs-Institut, für Biowissenschaften Universität Würzburg, Germany. 145-175 pp.
Kaur, M, Gill, M.I.S. y Arora, N.K. 2013. Effect of pre-harvest treatment on yield, maturity and quality of “Flame Seedless”““Flame Seedless”” grape (Vitis vinifera L.). Journal of Horticultural Sciences. 8: 35–40.
Leguizamón, G., González-León, A., Sotero-Mundo, R.R., Islas-Osuna, M.A., García-Robles, J.M., García-Orozco, K., Carvallo, T. y Báez-Sañudo, R. 2008. Efecto del sombreado de racimos sobre el color y la capacidad antioxidante en uvas de mesa (Vitis vinifera L.). Revista Iberoamericana Tecnología Postcosecha. 9: 138-147.
Leguizamón, G.M., González-León, A., Sotelo-Mundo, R., Islas-Osuna, M., Bringas-Taddei ,E. García-Robles, M. y Báez-Sañudo, R. 2008. Efecto de luminosidad y temperatura sobre color y parámetros de calidad en uvas rojas para mesa (Vitis vinifera L.). Fitotecnia Mexicana. 31: 7-17. https://doi.org/10.35196/rfm.2008.1.7
Liu, J., Yue, R., Si, M., Wu, M., Cong, L., Zhai, R., Yang, C., Wang, Z., Ma, F. y Xu, L. 2019. Effects of exogenous application of melatonin on quality and sugar metabolism in ‘Zaosu’ pear fruit. Journal of Plant Growth Regulation. 38: 1161-1169. https://doi.org/10.1007/s00344-019-09921-0
Meng, J.F., Xu, T.F., Song, C.Z., Yu, Y., Hu, F., Zhang, L., Zhang, Z.W. y Xi, Z.M. 2015. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Food Chemistry. 185: 127-134. https://doi.org/10.1016/j.foodchem.2015.03.140
Miranda, S., Vilches, P., Suazo, M., Pavez, L., García, K., Méndez, M.A., González, M., Meisel, L.A., Defilippi, B.G. and Del Pozo, T., 2020. Melatonin triggers metabolic and gene expression changes leading to improved quality traits of two sweet cherry cultivars during cold storage. Food Chemistry. 319: 126360. https://doi.org/10.1016/j.foodchem.2020.126360
Movahed, N., Pastore, C., Cellini, A., Allegro, G., Valentini, G., Zenoni, S., Cavallini, E., D’Incà ,E., Tornielli, G.B. y Filippetti, I. 2016. The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. Journal Plant Research. 129: 513–526. https://doi.org/10.1007/s10265-016-0786-3
NMX-FF-026-SCFI-2006. Productos Alimenticios no Industrializados para Uso Humano – Fruta Fresca– Uva de Mesa (Vitis Vinifera L.) – Especificaciones (Cancela A La Nmx-Ff- 026-1994-Scfi). [Consultado 14 de mayo de 2018] 2006. Disponible en: https://caisatech.net/uploads/XXI_2_MXD_C107_NMX-FF-026-SCFI-2006_R0_7ABR2006.pdf.
Ochoa-Villarreal, M., Vargas-Arispuro, I., Islas-Osuna, M.A., González-Aguilar, G. y Martínez-Téllez, M.A. 2011. Pectin-derived oligosaccharides increase color and anthocyanin content in “Flame Seedless” “Flame Seedless” grapes. Journal of the Science of Food and Agriculture. 91: 1928–1930. https://doi.org/10.1002/jsfa.4412
Oraei, M., Panahirad, S., Zaare-Nahand,i F. y Gohari, G. 2019. Pre-veraison treatment of salicylic acid to enhance anthocyanin content of grape (Vitis vinifera L.) berries. Journal of the Science of Food Agriculture. 99: 5946–5952. https://doi.org/10.1002/jsfa.9869
Pensec, F., Paczkowski, C., Grabarczyk, M., Wózniak, A., Bérnard-Gellon, M., Bertsch, C., Chong J. y Szakiel A. 2014. Changes in the triterpenoid content of cuticular waxes during fruit ripening of eight grape (Vitis vinifera L.) cultivars grown in the upper Rhine Valley. Journal of Agriculture and Food Chemestry. 62: 7998−8007. https://doi.org/10.1021/jf502033s
Peppi, M.C. 2004. Color development studies in table grapes. MS Thesis. University of California, Davis.
Peppi, M.C., Fidelibus, M.W. y Dokoozlian, D. 2006. Abscisic acid application timing and concentration affect firmness, pigmentation, and color of Flame Seedless grapes. Horscience. 41: 1440–1445. https://doi.org/10.21273/HORTSCI.41.6.1440
Riederer, M. y Schneider, G. 1990. The effect of enviroment in the permeability and composition of citrus leaf cuticles II. Composition of soluble cuticular lipids and correlation with transport properties. Planta. 180: 154-165.
Schönherr, J. y Rieder, M. 1986. Plant cuticles sorb lipophylic compounds during enzimatic isolation. Plant Cell and Enviroment. 9: 459-466. https://doi.org/10.1111/j.1365-3040.1986.tb01761.x
Seymour, G.B., Ostergaard, L., Chapman, L.H., Knapp, S. y Martin, C. 2013. Fruit development and ripening. Annual Review Plant Biol. 64: 219-41. 10.1146/annurev-arplant-050312-120057
Sun, Q., Zhang, N., Wang, J., Cao, Y., Li, X., Zhang, H., Zhang, L., Tan, D. y Guo, Y. 2016. A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. Journal of Pineal Research. 61:138-153. https://doi.org/10.1111/jpi.12315
Tafolla-Arellano, J.C., González-León, A., Tiznado-Hernández, M.E. Zacarías-García, L. y Báez Sañudo, R. 2013. Composición, Fisiología y Biosíntesis de la Cutícula en Plantas. Revista Fitotecnia Mexicana. 36(1): 3-12.
Trivedi, P., Nguyen, N., Hykkerud, A.L., Häggman, H., Martinussen, I., Jaakol, L. y Karppinen, K. 2019. Developmental and environmental regulation of cuticular wax biosynthesis in fleshy fruits. Front. Plant Science. 10: 431. https://doi.org/10.3389/fpls.2019.00431
Wu, C., Cao, S., Xie, K., Chi, Z., Wang, J., Wang, H., Wei, Y., Shao, X., Zhang, C., Xu, F. and Gao, H., 2021. Melatonin delays yellowing of broccoli during storage by regulating chlorophyll catabolism and maintaining chloroplast ultrastructure. Postharvest Biology and Technology 172: 111378. https://doi.org/10.1016/j.postharvbio.2020.111378
Xu, L., Yue, Q., Xiang, G., Bian, F. y Yao, Y. 2018. Melatonin promotes ripening of grape berry via increasing the levels of ABA, H2O2, and particularly ethylene. Horticulturae Research. 5:41. https://doi.org/10.1038/s41438-018-0045-y
Yadav, N., Singh, A.K., Emran, T.B., Chaudhary, R.G., Sharma, R., Sharma, S. and Barman, K., 2022. Salicylic Acid Treatment Reduces Lipid Peroxidation and Chlorophyll Degradation and Preserves Quality Attributes of Pointed Gourd Fruit. Journal of Food Quality, 2022: D 2090562. https://doi.org/10.1155/2022/2090562
Yang, M., Luo, Z., Gao, S., Belwal, T., Wang, L., Qi, M., Ban, Z., Wu, B., Wang, F. y Li, L. 2021. The chemical composition and potential role of epicuticular and intracuticular wax in four cultivars of table grapes. Postharvest Biology and Technology. 173: 111430. https://doi.org/10.1016/j.postharvbio.2020.111430
Zhang, N., Sun, Q., Li, H., Li, X., Cao, Y., Zhang, H., Li, S., Zhang, L., Qi, Y., Ren, S., Zhao, B. y Guo1, Y. 2016. Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Frontiers Plant Science.7: 197. https://doi.org/10.3389/fpls.2016.00197
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.