Caracterización bioquímica y molecular de la glucoamilasa producida por la cepa de Aspergillus niger HPD-2
Caracterización bioquímica y molecular de la glucoamilasa
DOI:
https://doi.org/10.18633/biotecnia.v26i1.2024Palabras clave:
Glucoamilasa, A. niger, caracterización molecular, caracterización bioquímica, cinética enzimáticaResumen
Resumen: Aspergillus niger HPD-2 presenta características particulares de cultivo, crece a una temperatura de 38 ºC y a un pH de 3, además se sabe que produce diversas enzimas de interés comercial como la glucoamilasa, que se encuentra presente en el medio aún bajo condiciones no inducibles y tiene características de actividad interesantes como son, una temperatura óptima de 70 ºC y un pH óptimo de 3-4. Estas características son muy importantes porque ayudarán a minimizar el riesgo de contaminación microbiana en procesos de hidrólisis industrial.
Para la caracterización de la glucoamilasa de A. niger HPD-2 se comprobó la presencia y actividad de la enzima en un medio no inductor. Se determinaron los parámetros cinéticos aparentes Km, Ki, y Vmax, 6.66 mM, 0.601 M y 66.5 mM/min respectivamente, así como su temperatura y pH óptimos de actividad (pH 3 y 70 °C). Comparativamente hablando, estos datos son bastante competitivos que aquellos reportados para enzimas similares purificadas. Por otro lado, el análisis de la secuencia de ADN del gen de la glucoamilasa de A. niger HPD-2 mostró que no existen cambios en la región promotora ni en los dominios de unión al almidón. Por lo que la presencia de la enzima en un medio no inductor podría estar relacionada con cambios en una proteína represora CreA.
Descargas
Citas
Abarca, M.L. 2000. Taxonomía e Identificación de Especies Implicadas en la Aspergilosis Nosocomial. Revista Iberoamericana de Micología. 17(3), S79-S84.
An, X., Ding, C., Zhang, H., Liu, T., and Li, J. 2019. Overexpression of amyA and glaA substantially increases glucoamylase activity in Aspergillus niger. Acta Biochimica et Biophysica Sinica. 51(6), 638-644. https://doi.org/10.1093/abbs/gmz043
Andrews, J.F. 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnology and Bioengineering. 10, 707–723. https://doi.org/10.1002/bit.260100602
Arica, M.Y., Yavuz, H., Patir, S. and Denizli, A. 2000. Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: characterization and application to a continuous flow reactor. Journal of Molecular Catalysis B: Enzymatic. 11,127–138. https://doi.org/10.1016/S1381-1177(00)00223-X
Bahar, T. and Çelebi, S.S. 2000. Performance of immobilized glucoamylase in a magnetically stabilized fluidized bed reactor (MSFBR). Enzyme and Microbial Technology. 26: 28–33. https://doi.org/10.1016/S0141-0229(99)00129-5
Baker, S.E. 2006. Aspergillus niger genomics: Past, present and into the future. Medical Mycology. 44(s1), 17–21. https://doi.org/10.1080/13693780600921037
Banerjee Soumik and Ghosh Uma. 2017. Production and Characterization of Glucoamylase by Aspergillus niger. Applied Food Biotechnology, 4 (1):19-26
Baltazar-Ramírez, J. (1984). Estudio cinético preliminar de una cepa de Aspergillus sp con actividad amilolítica. Tesis de licenciatura en ingeniería en biotecnología. Universidad Veracruzana. Facultad de Ciencias.
Behera, B.C. 2020. Citric acid from Aspergillus niger: a comprehensive overview. Critical Reviews in Microbiology. 46(6), 727–749. https://doi.org/10.1080/1040841X.2020.1828815
Berka, R.M., Dunn-Coleman, N.S. and Ward, M. 1992. Industrial enzymes from Aspergillus species. In Aspergillus: biology and industrial applications. J.W. Bennett, M.A. Klich (eds), pp 155–202. Butterworth-Heinemann. London. ISSN : 0740-7378
Bertoldo, C. and Antranikian, G. 2002. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Current Opinion in Chemical Biology. 6, 151-160. https://doi.org/10.1016/S1367-5931(02)00311-3
Bui, D.M., Kunze, I., Forster, S., Wartmann, T., Horstmann, C., Manteuffel, R., and Kunze, G. 1996. Cloning and expression of an Arxula adeninivorans glucoamylase gene in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 44, 610-619. https://doi.org/10.1007/BF00172493
Cairns, T.C., Barthel, L. and Meyer, V. 2021. Something old, something new: challenges and developments in Aspergillus niger biotechnology. Essays in Biochemistry. 65(2), 213–224. https://doi.org/10.1042/EBC20200139
Cairns, T.C., Nai, C. and Meyer, V. 2018. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biology and Biotechnology. 5(13), 1-14. https://doi.org/10.1186/s40694-018-0054-5
Carballo y Melgarejo, M. 1986. Sistema amilolítico de Aspergillus niger HPD-2: Factores que afectan su producción y actividad. Tesis de Maestría en ingeniería bioquímica. Instituto Tecnológico de Veracruz, México.
Cervantes-Montelongo, J.A. 2009. Amplificación de los ITS´s del ADNr 5.8S para la identificación dos aislados, uno de residuos de tenería y otro potencialmente sobreproductor de glucoamilasa. Tesis de Licenciatura en Ingeniería Bioquímica, Instituto Tecnológico de Celaya. México.
Ceseño-Gamez, A. 1988. Producción de amilasa por Aspergillus niger HPD-2 en Cultivo sumergido con harina integral de yuca. Tesis de maestría en ciencias en ingeniería bioquímica. Centro de Graduados del Instituto Tecnológico de Veracruz, México.
de Assis, L. J., Pereira Silva, L., Bayram, O., Dowling, P., Kniemeyer, O., Krüger, T., Brakhage, A. A., Chen, Y., Dong, L., Tan, K., Wong, K. H., Ries L. N. A., and Goldman, G. H. 2021. Carbon catabolite repression in filamentous fungi is regulated by phosphorylation of the transcription factor CreA. ASM Journals mBio 12(1). https://journals.asm.org/doi/abs/10.1128/mbio.03146-20
Dowzer, C., and Kelly, M.J. 1991. Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Molecular and Cellular Biology 11, 5701-5709. https://doi.org/10.1128/mcb.11.11.5701-5709.1991
EFSA CEP Panel (EFSA Panel on Food Contact Materials, Enzymes and Processing Aids), Lambré, C., Barat Baviera, J. M., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., Lampi, E., Mengelers, M., Mortensen, A., Rivière, G., Steffensen, I-L., Tlustos, C., Van Loveren, H., Vernis, L., Zorn, H., Aguilera, J., Andryszkiewicz, M., Liu, Y., di Piazza, G., Rainieri, S. and Chesson, A. 2023. Scientific Opinion on the safety evaluation of the food enzyme catalase from the non-genetically modified Aspergillus niger strain CTS 2093. EFSA Journal 2023; 21(2):7843, 16 pp. https://doi.org/10.2903/j.efsa.2023.7843
Grassin, C. and Fauguenbergue, P. 1999. Enzymes, fruit juice processing. In: Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation, M.C. Flickinger and S.W. Drew (eds) Wiley & Sons, Inc, New York. https://doi.org/10.1002/0471250589.ebt083.
He Lei, Mao Youzhi, Zhang Lujia, Wang Hualei, Alias Siti Aisyah, Gao Bei and Wei Dongzhi. 2017. Functional expression of a novel α-amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. BMC Biotechnology (2017) 17:22. DOI 10.1186/s12896-017-0343-8.
Henrissat, B. 1991. A Classification of Glycosyl hydrolases based on amino-acid sequence similarities. Biochemical Journal, 280, 309-316. https://doi.org/10.1042/bj2800309
Li, C., Zhou, J., Du, G., Chen, J., Takahashi, S., and Liu, S. 2020a. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnology Advances, 107630. doi:10.1016/j.biotechadv.2020.107630
Li, Q., Ray, C. S., Callow, N. V., Loman, A. A., Islam, S. and Ju, L. 2020b. Aspergillus niger production of pectinase and α-galactosidase for enzymatic soy processing. Enzyme and microbial technology 134: 109476. https://doi.org/10.1016/j.enzmictec.2019.109476
Liu, D., Liu, Q., Guo, W., Liu, Y., Wu, M., Zhang, Y., Li, J., Sun, W., Wang, X., He, Q. and Tian, C. 2022. Development of Genetic Tools in Glucoamylase-Hyperproducing Industrial Aspergillus niger Strains. Biology, 11(10), 1396. https://doi.org/10.3390/biology11101396
Lima, M.A.S., de Oliveira, M.C.F., Pimenta, A.T.Á. and Uchôa, P.K.S. 2019. Aspergillus niger: A Hundred Years of Contribution to Natural Products Chemistry. Journal of the Brazilian Chemical Society. 30(10), 2029-2059. https://doi.org/10.21577/0103-5053.20190080
MacGregor, E.A., Janecek, S. and Svensson, B. 2001. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology. 1546, 1–20. https://doi.org/10.1016/S0167-4838(00)00302-2
Pandey, A., Nigam, P., Soccol, C.R., Soccol, VT., Singh, D. and Mohan, R. 2000. Advances in microbial amylases. Biotechnology and Applied Biochemistry. 31, 135-152. doi:10.1042/ba19990073
Papadaki, E. and Mantzouridou, F. T. 2023. Αpplication Of Aspergillus niger For Extracellular Tannase And Gallic Acid Production In Non-Sterile Table Olive Processing Wastewaters. Waste And Biomass Valorization (2023). https://doi.org/10.1007/s12649-023-02242-0
Riaz Muhammad, Rashid Muhammad Hamid, Sawyer Lindsay, Akhtar Saeed, Javed Muhammad Rizwan, Nadeem Habibullah, and Wear Martin. 2012. Physiochemical properties and kinetics of glucoamylase produced from deoxy-D-glucose resistant mutant of Aspergillus niger for soluble starch hydrolysis. Food Chemistry. 1; 130(1): 24–30. doi:10.1016/j.foodchem.2011.06.037.
Rippel-Baldes, A. 1955. Grundzüge der Mikrobiologie. Springer, Berlin Heidelberg New York.
Schuster, E., Dunn-Coleman, N., Frisvad, P. and van Dijck, P. 2002. On the safety of Aspergillus niger a review. Applied Microbiology and Biotechnology. 59, 426–435. https://doi.org/10.1007/s00253-002-1032-6
Silva, R.N., Asquieri, E.R. and Fernandes, K.F. 2005. Immobilization of Aspergillus niger glucoamylase onto a polyaniline polymer. Process Biochemistry. 40, 1155–1159. https://doi.org/10.1016/j.procbio.2004.04.006
Strauss, J., Horvath, H. K., Abdallah, B. M., Kindermann, J., Mach, R.L. and Kubicek, C. P. 1999. The Function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Molecular Microbiology. 32(1), 169-178. https://doi.org/10.1046/j.1365-2958.1999.01341.x
Viniegra-González, G., Favela-Torres, E., Noé-Aguilar, C., Romero-Gómez, S., Diaz- Godínez, G. and Augur, C. 2003. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochemical Engineering Journal. 13, 157-167. https://doi.org/10.1016/S1369-703X(02)00128-6
Yu, R., Liu, J., Wang, Y., Wang, H. and Zhang, H. 2021. Aspergillus niger As A Secondary Metabolite Factory. Frontiers In Chemistry 9. https://doi.org/10.3389/fchem.2021.701022
Zong, X., Wen, L., Wang, Y. and Li, L. 2022. Research progress of glucoamylase with industrial potential. Journal of Food Biochemistry, 46, e14099. https://doi.org/10.1111/jfbc.14099
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)