Biochemical and molecular characterization of glucoamylase produced by the Aspergillus niger strain HPD-2

Biochemical and molecular characterization of glucoamylase

Authors

  • Fernando Pérez Rodríguez Universidad Quetzalcóatl
  • Dra. Escuela de Medicina de la Universidad de Celaya, Celaya, Guanajuato, 38080, México
  • Dr. Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, 38010, México Cátedras CONACYT- Tecnológico Nacional de México, Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, 38010, México
  • Dr. Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, 38010, México

DOI:

https://doi.org/10.18633/biotecnia.v26i1.2024

Keywords:

Glucoamylase, A. niger, Biochemical characterization, Molecular characterization, Enzyme kinetic

Abstract

Abstract: Aspergillus niger HPD-2 has interesting growth characteristics, it grows at a temperature of 38 ºC and pH of 3, it is also known that it produces various enzymes of commercial interest such as glucoamylase, which is present in the medium even under non-inducible conditions and has important activity characteristics such as an optimum temperature of 70 ºC and an optimum pH of 3-4. These features are very important because they will help to minimize microbial contamination risk in industrial hydrolysis processes.

For the characterization of A. niger HPD-2 glucoamylase, the presence and activity of the enzyme were verified in a non-inducing medium. The apparent kinetic parameters Km, Ki and Vmax were determined, 6.66 mM, 0.601 M and 66.5 mM/min respectively. As well as its optimum pH and temperature activity (pH 3 and 70 °C). Comparatively speaking, these data are competitive against those reported for similar purified enzymes. On the other hand, DNA sequence analysis of A. niger HPD-2 glucoamylase gene showed no changes in the promoter region or starch-binding domains. Therefore, the presence of the enzyme in a non-inducing medium could be related to changes in a repressor protein CreA.

 

 

Downloads

Download data is not yet available.

Author Biographies

Dra., Escuela de Medicina de la Universidad de Celaya, Celaya, Guanajuato, 38080, México

 

 

Dr., Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, 38010, México Cátedras CONACYT- Tecnológico Nacional de México, Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, 38010, México

 

 

Dr., Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, 38010, México

 

 

References

Abarca, M.L. 2000. Taxonomía e Identificación de Especies Implicadas en la Aspergilosis Nosocomial. Revista Iberoamericana de Micología. 17(3), S79-S84.

An, X., Ding, C., Zhang, H., Liu, T., and Li, J. 2019. Overexpression of amyA and glaA substantially increases glucoamylase activity in Aspergillus niger. Acta Biochimica et Biophysica Sinica. 51(6), 638-644. https://doi.org/10.1093/abbs/gmz043

Andrews, J.F. 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnology and Bioengineering. 10, 707–723. https://doi.org/10.1002/bit.260100602

Arica, M.Y., Yavuz, H., Patir, S. and Denizli, A. 2000. Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: characterization and application to a continuous flow reactor. Journal of Molecular Catalysis B: Enzymatic. 11,127–138. https://doi.org/10.1016/S1381-1177(00)00223-X

Bahar, T. and Çelebi, S.S. 2000. Performance of immobilized glucoamylase in a magnetically stabilized fluidized bed reactor (MSFBR). Enzyme and Microbial Technology. 26: 28–33. https://doi.org/10.1016/S0141-0229(99)00129-5

Baker, S.E. 2006. Aspergillus niger genomics: Past, present and into the future. Medical Mycology. 44(s1), 17–21. https://doi.org/10.1080/13693780600921037

Banerjee Soumik and Ghosh Uma. 2017. Production and Characterization of Glucoamylase by Aspergillus niger. Applied Food Biotechnology, 4 (1):19-26

Baltazar-Ramírez, J. (1984). Estudio cinético preliminar de una cepa de Aspergillus sp con actividad amilolítica. Tesis de licenciatura en ingeniería en biotecnología. Universidad Veracruzana. Facultad de Ciencias.

Behera, B.C. 2020. Citric acid from Aspergillus niger: a comprehensive overview. Critical Reviews in Microbiology. 46(6), 727–749. https://doi.org/10.1080/1040841X.2020.1828815

Berka, R.M., Dunn-Coleman, N.S. and Ward, M. 1992. Industrial enzymes from Aspergillus species. In Aspergillus: biology and industrial applications. J.W. Bennett, M.A. Klich (eds), pp 155–202. Butterworth-Heinemann. London. ISSN : 0740-7378

Bertoldo, C. and Antranikian, G. 2002. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Current Opinion in Chemical Biology. 6, 151-160. https://doi.org/10.1016/S1367-5931(02)00311-3

Bui, D.M., Kunze, I., Forster, S., Wartmann, T., Horstmann, C., Manteuffel, R., and Kunze, G. 1996. Cloning and expression of an Arxula adeninivorans glucoamylase gene in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 44, 610-619. https://doi.org/10.1007/BF00172493

Cairns, T.C., Barthel, L. and Meyer, V. 2021. Something old, something new: challenges and developments in Aspergillus niger biotechnology. Essays in Biochemistry. 65(2), 213–224. https://doi.org/10.1042/EBC20200139

Cairns, T.C., Nai, C. and Meyer, V. 2018. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biology and Biotechnology. 5(13), 1-14. https://doi.org/10.1186/s40694-018-0054-5

Carballo y Melgarejo, M. 1986. Sistema amilolítico de Aspergillus niger HPD-2: Factores que afectan su producción y actividad. Tesis de Maestría en ingeniería bioquímica. Instituto Tecnológico de Veracruz, México.

Cervantes-Montelongo, J.A. 2009. Amplificación de los ITS´s del ADNr 5.8S para la identificación dos aislados, uno de residuos de tenería y otro potencialmente sobreproductor de glucoamilasa. Tesis de Licenciatura en Ingeniería Bioquímica, Instituto Tecnológico de Celaya. México.

Ceseño-Gamez, A. 1988. Producción de amilasa por Aspergillus niger HPD-2 en Cultivo sumergido con harina integral de yuca. Tesis de maestría en ciencias en ingeniería bioquímica. Centro de Graduados del Instituto Tecnológico de Veracruz, México.

de Assis, L. J., Pereira Silva, L., Bayram, O., Dowling, P., Kniemeyer, O., Krüger, T., Brakhage, A. A., Chen, Y., Dong, L., Tan, K., Wong, K. H., Ries L. N. A., and Goldman, G. H. 2021. Carbon catabolite repression in filamentous fungi is regulated by phosphorylation of the transcription factor CreA. ASM Journals mBio 12(1). https://journals.asm.org/doi/abs/10.1128/mbio.03146-20

Dowzer, C., and Kelly, M.J. 1991. Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Molecular and Cellular Biology 11, 5701-5709. https://doi.org/10.1128/mcb.11.11.5701-5709.1991

EFSA CEP Panel (EFSA Panel on Food Contact Materials, Enzymes and Processing Aids), Lambré, C., Barat Baviera, J. M., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., Lampi, E., Mengelers, M., Mortensen, A., Rivière, G., Steffensen, I-L., Tlustos, C., Van Loveren, H., Vernis, L., Zorn, H., Aguilera, J., Andryszkiewicz, M., Liu, Y., di Piazza, G., Rainieri, S. and Chesson, A. 2023. Scientific Opinion on the safety evaluation of the food enzyme catalase from the non-genetically modified Aspergillus niger strain CTS 2093. EFSA Journal 2023; 21(2):7843, 16 pp. https://doi.org/10.2903/j.efsa.2023.7843

Grassin, C. and Fauguenbergue, P. 1999. Enzymes, fruit juice processing. In: Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation, M.C. Flickinger and S.W. Drew (eds) Wiley & Sons, Inc, New York. https://doi.org/10.1002/0471250589.ebt083.

He Lei, Mao Youzhi, Zhang Lujia, Wang Hualei, Alias Siti Aisyah, Gao Bei and Wei Dongzhi. 2017. Functional expression of a novel α-amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. BMC Biotechnology (2017) 17:22. DOI 10.1186/s12896-017-0343-8.

Henrissat, B. 1991. A Classification of Glycosyl hydrolases based on amino-acid sequence similarities. Biochemical Journal, 280, 309-316. https://doi.org/10.1042/bj2800309

Li, C., Zhou, J., Du, G., Chen, J., Takahashi, S., and Liu, S. 2020a. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnology Advances, 107630. doi:10.1016/j.biotechadv.2020.107630

Li, Q., Ray, C. S., Callow, N. V., Loman, A. A., Islam, S. and Ju, L. 2020b. Aspergillus niger production of pectinase and α-galactosidase for enzymatic soy processing. Enzyme and microbial technology 134: 109476. https://doi.org/10.1016/j.enzmictec.2019.109476

Liu, D., Liu, Q., Guo, W., Liu, Y., Wu, M., Zhang, Y., Li, J., Sun, W., Wang, X., He, Q. and Tian, C. 2022. Development of Genetic Tools in Glucoamylase-Hyperproducing Industrial Aspergillus niger Strains. Biology, 11(10), 1396. https://doi.org/10.3390/biology11101396

Lima, M.A.S., de Oliveira, M.C.F., Pimenta, A.T.Á. and Uchôa, P.K.S. 2019. Aspergillus niger: A Hundred Years of Contribution to Natural Products Chemistry. Journal of the Brazilian Chemical Society. 30(10), 2029-2059. https://doi.org/10.21577/0103-5053.20190080

MacGregor, E.A., Janecek, S. and Svensson, B. 2001. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology. 1546, 1–20. https://doi.org/10.1016/S0167-4838(00)00302-2

Pandey, A., Nigam, P., Soccol, C.R., Soccol, VT., Singh, D. and Mohan, R. 2000. Advances in microbial amylases. Biotechnology and Applied Biochemistry. 31, 135-152. doi:10.1042/ba19990073

Papadaki, E. and Mantzouridou, F. T. 2023. Αpplication Of Aspergillus niger For Extracellular Tannase And Gallic Acid Production In Non-Sterile Table Olive Processing Wastewaters. Waste And Biomass Valorization (2023). https://doi.org/10.1007/s12649-023-02242-0

Riaz Muhammad, Rashid Muhammad Hamid, Sawyer Lindsay, Akhtar Saeed, Javed Muhammad Rizwan, Nadeem Habibullah, and Wear Martin. 2012. Physiochemical properties and kinetics of glucoamylase produced from deoxy-D-glucose resistant mutant of Aspergillus niger for soluble starch hydrolysis. Food Chemistry. 1; 130(1): 24–30. doi:10.1016/j.foodchem.2011.06.037.

Rippel-Baldes, A. 1955. Grundzüge der Mikrobiologie. Springer, Berlin Heidelberg New York.

Schuster, E., Dunn-Coleman, N., Frisvad, P. and van Dijck, P. 2002. On the safety of Aspergillus niger a review. Applied Microbiology and Biotechnology. 59, 426–435. https://doi.org/10.1007/s00253-002-1032-6

Silva, R.N., Asquieri, E.R. and Fernandes, K.F. 2005. Immobilization of Aspergillus niger glucoamylase onto a polyaniline polymer. Process Biochemistry. 40, 1155–1159. https://doi.org/10.1016/j.procbio.2004.04.006

Strauss, J., Horvath, H. K., Abdallah, B. M., Kindermann, J., Mach, R.L. and Kubicek, C. P. 1999. The Function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Molecular Microbiology. 32(1), 169-178. https://doi.org/10.1046/j.1365-2958.1999.01341.x

Viniegra-González, G., Favela-Torres, E., Noé-Aguilar, C., Romero-Gómez, S., Diaz- Godínez, G. and Augur, C. 2003. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochemical Engineering Journal. 13, 157-167. https://doi.org/10.1016/S1369-703X(02)00128-6

Yu, R., Liu, J., Wang, Y., Wang, H. and Zhang, H. 2021. Aspergillus niger As A Secondary Metabolite Factory. Frontiers In Chemistry 9. https://doi.org/10.3389/fchem.2021.701022

Zong, X., Wen, L., Wang, Y. and Li, L. 2022. Research progress of glucoamylase with industrial potential. Journal of Food Biochemistry, 46, e14099. https://doi.org/10.1111/jfbc.14099

Downloads

Published

2023-12-06

How to Cite

Pérez Rodríguez, F., Pliego-Arreaga, R., Silva-Martínez, G. A., & Cervantes-Montelongo, J. A. (2023). Biochemical and molecular characterization of glucoamylase produced by the Aspergillus niger strain HPD-2: Biochemical and molecular characterization of glucoamylase. Biotecnia, 26, 5–15. https://doi.org/10.18633/biotecnia.v26i1.2024

Issue

Section

Research Articles

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.