El cribado de hábitats marinos locales sugiere una nueva cepa, Bacillus subtilis MZ1, como un posible productor de ácidos grasos

Autores/as

  • Mohamed Aboelnaga
  • Briksam S. Mohamed
  • Maha Azab
  • Mohammad Hegazy
  • Sara Saad
  • Dalia Abdel-Fattah H. Selim
  • Saadiya El-Nahas
  • Sabha M. El-Sabbagh
  • Muhammad Zayed Menoufia University-Faculty of Science https://orcid.org/0000-0003-1314-4794

DOI:

https://doi.org/10.18633/biotecnia.v26i1.2058

Palabras clave:

Bacillus subtilis, ácidos grasos, cromatografía de gases, ácido caproico, ácido caprílico, oxidación β inversa

Resumen

Dentro de este artículo de investigación académica, se observa que una bacteria aislada de un entorno de suelo marino cerca del Mar Mediterráneo posee el potencial de producir diversos ácidos grasos, especialmente los ácidos n-caproico y oleico, según lo evidencia el perfil FAME. Además, la introducción de glucosa en el medio de crecimiento potencia la producción de ácido caprílico en lugar de ácido caproico. La secuenciación del 16S rDNA sugiere que la cepa MZ1 pertenece a Bacillus subtilis y está estrechamente relacionada con muchas especies halófilas. El perfil FAME revela que la cepa MZ1 aislada es competente en la producción total de ácidos grasos en comparación con otros candidatos bacterianos marinos. Además, los resultados indican que MZ1 es eficiente en la producción de muchos otros ácidos grasos. Esta exploración sugiere que la bacteria marina Bacillus subtilis MZ1 puede ser utilizada para la síntesis de ácidos grasos, lo cual podría ser valioso para la producción de biodiesel y otras aplicaciones.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Atikij, T., Syaputri, Y., Iwahashi, H., Praneenararat, T., Sirisattha, S., Kageyama, H., and Waditee-Sirisattha, R., 2019. Enhanced lipid production and molecular dynamics under salinity stress in green microalga chlamydomonas reinhardtii (137C). Marine Drugs, 17 (8), 1–15. DOI: https://doi.org/10.3390/md17080484

Aziz, A., Siti-Fairuz, M., Abdullah, M.Z., Ma, N.L., and Marziah, M., 2015. Fatty acid profile of salinity tolerant rice genotypes grown on saline soil. Malaysian Applied Biology, 44 (1), 119–124.

Bisen, P.S., Debnath, M., and Prasad, G.B.K.S., 2012. Microbes: Concepts and Applications. Microbes: Concepts and Applications. Gwalior, India: Wiley-Blackwell. DOI: https://doi.org/10.1002/9781118311912

Diomandé, S., Nguyen-The, C., Guinebretière, M.-H., Broussolle, V., and Brillard, J., 2015. Role of fatty acids in Bacillus environmental adaptation. Frontiers in Microbiology, 6. DOI: https://doi.org/10.3389/fmicb.2015.00813

Downes, F.P. and Ito, K., eds., 2001. Compendium of Methods for The Microbiological Examination of Foods. 4th ed. Compendium of Methods for The Microbiological Examination of Foods. Washington, D.C: American Public Health Association. DOI: https://doi.org/10.2105/9780875531755

El-Halmouch, Y., 2019. Adaptive changes in saturated fatty acids as a resistant mechanism in salt stress in halomonas alkaliphila YHSA35. Egyptian Journal of Botany, 59 (2), 537–549. DOI: https://doi.org/10.21608/ejbo.2019.7553.1282

Folch, J., Lees, M., and Sloane Stanley, G.H., 1957. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of biological chemistry, 226, 497–509. DOI: https://doi.org/10.1016/S0021-9258(18)64849-5

Gad, A.M., Beltagy, E.A., Abdul-Raouf, U.M., El-Shenawy, M.A., and Abouelkheir, S.S., 2016. Screening of Marine Fatty Acids Producing Bacteria with Antimicrobial Capabilities. Chemistry of Advanced Materials, 1 (2), 41–45.

Hegazy, M., Zhou, P., Wu, G., Taloub, N., Zayed, M., Huang, X., and Huang, Y., 2020. Facile Synthesis of Poly(DMAEMA-co-MPS)-coated Porous Silica Nanocarriers as Dual-targeting Drug Delivery Platform: Experimental and Biological Investigations. Acta Chimica Slovenica, 67 (2), 462–468. DOI: https://doi.org/10.17344/acsi.2019.5390

Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., and Vinh, L.S., 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35 (2), 518–522. DOI: https://doi.org/10.1093/molbev/msx281

Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., and Natarajan, M., 2012. Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16 (1), 143–169. DOI: https://doi.org/10.1016/j.rser.2011.07.143

Hosono, K., 1992. Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerant yeast Zygosaccharomyces rouxii. Journal of General Microbiology, 138, 91–96. DOI: https://doi.org/10.1099/00221287-138-1-91

Hounslow, E., Kapoore, R., Vaidyanathan, S., Gilmour, D., and Wright, P., 2016. The Search for a Lipid Trigger: The Effect of Salt Stress on the Lipid Profile of the Model Microalgal Species Chlamydomonas reinhardtii for Biofuels Production. Current Biotechnology, 5 (4), 305–313. DOI: https://doi.org/10.2174/2211550105666160322234434

Janßen, H. and Steinbüchel, A., 2014. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnology for Biofuels, 7 (1), 7. DOI: https://doi.org/10.1186/1754-6834-7-7

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., and Jermiin, L.S., 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14 (6), 587–589. DOI: https://doi.org/10.1038/nmeth.4285

Kan, G., Shi, C., Wang, X., Xie, Q., Wang, M., Wang, X., and Miao, J., 2012. Acclimatory responses to high-salt stress in Chlamydomonas (Chlorophyta, Chlorophyceae) from Antarctica. Acta Oceanologica Sinica, 31, 116–124. DOI: https://doi.org/10.1007/s13131-012-0183-2

Katoh, K., Rozewicki, J., and Yamada, K.D., 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20 (4), 1160–1166. DOI: https://doi.org/10.1093/bib/bbx108

Ke, J., Behal, R.H., Back, S.L., Nikolau, B.J., Wurtele, E.S., and Oliver, D.J., 2000. The role of pyruvate dehydrogenase and acetyl-coenzyme A synthetase in fatty acid synthesis in developing Arabidopsis seeds. Plant Physiology, 123 (2), 497–508. DOI: https://doi.org/10.1104/pp.123.2.497

Kumar, M., Rathour, R., Gupta, J., Pandey, A., Gnansounou, E., and Thakur, I.S., 2020. Bacterial production of fatty acid and biodiesel: opportunity and challenges. In: Refining Biomass Residues for Sustainable Energy and Bioproducts. Elsevier, 21–49. DOI: https://doi.org/10.1016/B978-0-12-818996-2.00002-8

Lee, H., Kim, J.E., Lee, S., and Lee, C.H., 2018. Potential effects of climate change on dengue transmission dynamics in Korea. PLoS ONE, 13 (6). DOI: https://doi.org/10.1371/journal.pone.0199205

Lennen, R.M. and Pfleger, B.F., 2013. Microbial production of fatty acid-derived fuels and chemicals. Current Opinion in Biotechnology, 24 (6), 1044–1053. DOI: https://doi.org/10.1016/j.copbio.2013.02.028

Letunic, I. and Bork, P., 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic acids research, 44 (W1), W242–W245. DOI: https://doi.org/10.1093/nar/gkw290

de los Santos Villalobos, S., Robles, R.I., Parra Cota, F.I., Larsen, J., Lozano, P., and Tiedje, J.M., 2019. Bacillus cabrialesii sp. nov., an endophytic plant growth promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) in the Yaqui Valley, Mexico. International Journal of Systematic and Evolutionary Microbiology, 69 (12), 3939–3945. DOI: https://doi.org/10.1099/ijsem.0.003711

Magdalena, J.A., Ballesteros, M., and González-Fernández, C., 2020. Acidogenesis and chain elongation for bioproduct development. In: J.A. Olivares, D. Puyol, J.A. Melero, and J. Dufour, eds. Wastewater Treatment Residues as Resources for Biorefinery Products and Biofuels. Elsevier Science, 391–414. DOI: https://doi.org/10.1016/B978-0-12-816204-0.00017-5

De Mendiburu, F. and Simon, R., 2015. Agricolae - Ten years of an open source statistical tool for experiments in breeding, agriculture and biology. PeerJ preprints 3:e1404v1. DOI: https://doi.org/10.7287/peerj.preprints.1404v1

Monteoliva-Sanchez, M., Ramos-Cormenzana, A., and Russell, N.J., 1993. The effect of salinity and compatible solutes on the biosynthesis of cyclopropane fatty acids in Pseudomonas halosaccharolytica. Journal of General Microbiology, 139, 1877–1884. DOI: https://doi.org/10.1099/00221287-139-8-1877

NCBI Resource Coordinators, 2016. Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 44 (Database issue), D7–D19. DOI: https://doi.org/10.1093/nar/gkv1290

Nguyen, L.-T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32 (1), 268–274. DOI: https://doi.org/10.1093/molbev/msu300

Oliveira, E.M. de, Sales, V.H.G., Andrade, M.S., Zilli, J.É., Borges, W.L., and Souza, T.M. de, 2021. Isolation and Characterization of Biosurfactant-Producing Bacteria from Amapaense Amazon Soils. International Journal of Microbiology, 2021, 1–11. DOI: https://doi.org/10.1155/2021/9959550

Osorio‐González, C.S., Hedge, K., K Brar, S., Kermanshahipour, A., and Avalos‐Ramírez, A., 2019. Challenges in lipid production from lignocellulosic biomass using Rhodosporidium sp.; A look at the role of lignocellulosic inhibitors. Biofuels, Bioproducts and Biorefining, 13 (3), 740–759. DOI: https://doi.org/10.1002/bbb.1954

R Development Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. R Foundation for Statistical Computing, Vienna, Austria.

Rana, Q. ul ain, Laiq Ur Rehman, M., Irfan, M., Ahmed, S., Hasan, F., Shah, A.A., Khan, S., and Badshah, M., 2019. Lipolytic bacterial strains mediated transesterification of non-edible plant oils for generation of high quality biodiesel. Journal of Bioscience and Bioengineering, 127 (5), 609–617. DOI: https://doi.org/10.1016/j.jbiosc.2018.11.001

Ratledge, C. and Lippmeier, C., 2017. Microbial Production of Fatty Acids. In: Fatty Acids. Elsevier Inc, Illinois, US, 237–278. DOI: https://doi.org/10.1016/B978-0-12-809521-8.00006-4

El Razak, A.A., Ward, A.C., and Glassey, J., 2014. Screening of Marine Bacterial Producers of Polyunsaturated Fatty Acids and Optimisation of Production. Microbial Ecology, 67 (2), 454–464. DOI: https://doi.org/10.1007/s00248-013-0332-y

Reimer, L.C., Sardà Carbasse, J., Koblitz, J., Ebeling, C., Podstawka, A., and Overmann, J., 2022. Bac Dive in 2022: the knowledge base for standardized bacterial and archaeal data. Nucleic Acids Research, 50 (D1), D741–D746. DOI: https://doi.org/10.1093/nar/gkab961

Rogers, S.L. and Burns, R.G., 1994. Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biology and Fertility of Soils, 18, 209–215. DOI: https://doi.org/10.1007/BF00647668

Rohatgi, A., 2019. WebPlotDigitizer [online]. Available from: https://automeris.io/WebPlotDigitizer [Accessed 20 May 2020].

Romano, R., Raddadi, N., and Fava, F., 2020. Mediterranean Sea bacteria as a potential source of long-chain polyunsaturated fatty acids. FEMS Microbiology Letters, 367 (16), 1–8. DOI: https://doi.org/10.1093/femsle/fnaa132

Ryan, J., Farr, H., Visnovsky, S., Vyssotski, M., and Visnovsky, G., 2010. A rapid method for the isolation of eicosapentaenoic acid-producing marine bacteria. Journal of Microbiological Methods, 82, 49–53. DOI: https://doi.org/10.1016/j.mimet.2010.04.001

Shaaban, M.T., Abdelhamid, R.M., Zayed, M., and Ali, S.M., 2021. Metagenomics technique as new source for antimicrobial agent production. Eco. Env. & Cons., 27, S204–S209.

Shaaban, M.T., Abdelhamid, R.M., Zayed, M., and Ali, S.M., 2022. Evaluation of a new antimicrobial agent production (RSMM C3) by using metagenomics approaches from Egyptian marine biota. Biotechnology Reports, 34, e00706. DOI: https://doi.org/10.1016/j.btre.2022.e00706

Shaaban, M.T., Zayed, M., and Salama, H.S., 2023. Antibacterial Potential of Bacterial Cellulose Impregnated with Green Synthesized Silver Nanoparticle Against S. aureus and P. aeruginosa. Current Microbiology, 80 (2), 75. DOI: https://doi.org/10.1007/s00284-023-03182-7

Shulse, C.N. and Allen, E.E., 2011. Diversity and distribution of microbial long‐chain fatty acid biosynthetic genes in the marine environment. Environmental Microbiology, 13 (3), 684–695. DOI: https://doi.org/10.1111/j.1462-2920.2010.02373.x

Tilay, A. and Annapure, U., 2012. Novel Simplified and Rapid Method for Screening and Isolation of Polyunsaturated Fatty Acids Producing Marine Bacteria. Biotechnology Research International, 2012:54272, 1–8. DOI: https://doi.org/10.1155/2012/542721

Urry, L.A., Cain, M.L., Wasserman, S.A., Minorsky, P. V, and Reece, J.B., 2017. Campbell biology. 11th ed. New York: Pearson.

Venkata Mohan, S. and Devi, M.P., 2014. Salinity stress induced lipid synthesis to harness biodiesel during dual mode cultivation of mixotrophic microalgae. Bioresource Technology, 165, 288–294. DOI: https://doi.org/10.1016/j.biortech.2014.02.103

Wang, Y., Hammes, F., Boon, N., and Egli, T., 2007. Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 μm pore size filters and shape-dependent enrichment of filterable bacterial communities. Environmental Science and Technology, 41 (20), 7080–7086. DOI: https://doi.org/10.1021/es0707198

Watanabe, K., Ishikawa, C., Yazawa, K., Kondo, K., and Kawaguchi, A., 1996. Fatty acid and lipid composition of an eicosapentaenoic acid-producing marine bacterium. Journal of Marine Biotechnology, 4 (2), 104–112.

Xue, J., Balamurugan, S., Li, D.W., Liu, Y.H., Zeng, H., Wang, L., Yang, W.D., Liu, J.S., and Li, H.Y., 2017. Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply. Metabolic Engineering, 41, 212–221. DOI: https://doi.org/10.1016/j.ymben.2017.04.008

Zayed, M. and Badawi, M.A., 2020. In-silico evaluation of a new gene from wheat reveals the divergent evolution of the CAP160 homologous genes Into monocots. Journal of Molecular Evolution, 88 (2), 151–163. DOI: https://doi.org/10.1007/s00239-019-09920-5

Zayed, M., El-Garawani, I.M., El-Sabbagh, S.M., Amr, B., Alsharif, S.M., Tayel, A.A., AlAjmi, M.F., Ibrahim, H.M.S., Shou, Q., Khalifa, S.A.M., El-Seedi, H.R., and Elfeky, N., 2022. Structural Diversity, LC-MS-MS Analysis and Potential Biological Activities of Brevibacillus laterosporus Extract. Metabolites, 12 (11), 1102. DOI: https://doi.org/10.3390/metabo12111102

Zhang, Z., Schwartz, S., Wagner, L., and Miller, W., 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7 (1–2), 203–214. DOI: https://doi.org/10.1089/10665270050081478

Zhu, M., Yu, L.J., Liu, Z., and Xu, H.B., 2004. Isolating Mortierella alpina strains of high yield of arachidonic acid. Letters in Applied Microbiology, 39, 332–335. DOI: https://doi.org/10.1111/j.1472-765X.2004.01581.x

Zhu, X., Zhou, Y., Wang, Y., Wu, T., Li, X., Li, D., and Tao, Y., 2017. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnology for Biofuels, 10, 102. DOI: https://doi.org/10.1186/s13068-017-0788-y

Publicado

2024-01-04

Cómo citar

Aboelnaga, M. ., Mohamed, B. S. ., Azab, M. ., Hegazy, M., Saad, S. ., Abdel-Fattah H. Selim, D. ., … Zayed, M. (2024). El cribado de hábitats marinos locales sugiere una nueva cepa, Bacillus subtilis MZ1, como un posible productor de ácidos grasos. Biotecnia, 26, 68–76. https://doi.org/10.18633/biotecnia.v26i1.2058

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.