Efecto del ácido oxálico en la vida poscosecha del tomate modificado con el gen TomLoxB en antisentido

Ácido Oxálico en tomate modificado geneticamente

Autores/as

  • Wendy Mazón-Abarca Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Veracruz, México. https://orcid.org/0000-0001-9274-5437
  • Elizabeth León García Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental La Posta, Medellín de Bravo, Veracruz, México https://orcid.org/0000-0002-3883-6167
  • José A. Ramirez Universidad Autónoma de Tamaulipas. Unidad Académica de Trabajo Social y Ciencias para el Desarrollo Humano, Cd. Victoria, Tamaulipas, México
  • Hugo S. García Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Veracruz, México. https://orcid.org/0000-0001-5805-0201

DOI:

https://doi.org/10.18633/biotecnia.v26i1.2101

Palabras clave:

Solanum lycopersicum, lipoxigenasa B, fuga de electrolitos, fenoles totales

Resumen

El ácido oxálico es un compuesto orgánico que se encuentra en vegetales de hoja verde y que ha demostrado ser eficaz para retrasar la maduración mediante la inhibición de la síntesis de etileno en frutos. En este estudio se evaluó la aplicación de ácido oxálico sobre la fisiología poscosecha en frutos de tomate (Solanum lycopersicum) variedad TA234 genéticamente modificados (GM) con la inserción del gen TomLoxB en antisentido, a dos concentraciones de ácido oxálico (3 y 10 mM) durante 30 d de almacenamiento a 25 ± 1 ºC y una humedad relativa del 65 - 70 %. Los frutos en estado break se sumergieron durante 10 min en la solución de ácido oxálico. Se observó una menor pérdida de peso, mejor retención de la luminosidad, un retraso en la disminución de la firmeza y del ángulo hue, disminución de la actividad lipoxigenasa, baja pérdida de electrolitos y un aumento en el contenido de fenoles totales. La concentración más eficaz fue de 3 mM, que prolongó la vida poscosecha hasta 30 d y redujo el deterioro del tomate modificado, mientras los frutos GM testigos tuvieron una vida postcosecha de 24 días, y los frutos silvestres testigo se mantuvieron satisfactoriamente por 15 d.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Wendy Mazón-Abarca, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Veracruz, México.

Estudiante graduada. El trabajo de su tesis doctoral ha sido presentado en 4 congresos y obtenido 2 premios como mejor trabajo dentro de su categoría. Cuenta con 2 publicaciones científicas derivadas del trabajo de tesis.

Elizabeth León García, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental La Posta, Medellín de Bravo, Veracruz, México

She is a full researcher since 2019 at the National Institute of Forestry, Agricultural and Livestock Research (INIFAP). She holds the level one in the National System for Researchers in Mexico. Researcher Leon has published 12 indexed research papers, presented more than 20 works in scientific meetings, and accumulated more than 56 citations. She has 2 book chapters, she has graduated 5 MSc students and 1 PhD one.

José A. Ramirez, Universidad Autónoma de Tamaulipas. Unidad Académica de Trabajo Social y Ciencias para el Desarrollo Humano, Cd. Victoria, Tamaulipas, México

El Dr. José Alberto Ramirez es profesor investigador de la Universidad Autónoma de Tamaulipas desde hace 39 años. Es Jefe de la división de estudios de posgrado y tiene una carrera consolidada en la investigación en alimentos, bioteconlogia, nutrición, lacteos, nutracéuticos. Tiene mas de 6200 citas y mas de 250 publicaciones. Ha dirigido tesis de licenciatura, maestría y doctorado sumando mas de 150. El Dr. Ramirez pertenece al Sistema Nacional de Investigadores en la categoría de Emerito.

Hugo S. García, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Veracruz, México.

Hugo S. García is a full professor since 1980 at the Veracruz Institute of Technology and a visiting Professor at the University of Wisconsin-Madison the summers of 1992 to 2010 and in CSIC or UAM in Spain to date. He holds the maximum level (Emeritus Researcher) in the National System for Researchers in Mexico.

Prof. Garcia has published 249 indexed research papers, presented more than 250 works in scientific meetings, and accumulated more than 9800 citations. He has 30 book chapters, one patent granted, and 3 more have been submitted; he has graduated 42 PhD and 90 MSc students. He obtained the National Award in Food Technology in 1996, became a member of the evaluation committee in 1997-2019 and served as chairman in 2002-2004. The Mexican Academy of Sciences elected Dr. Garcia as a regular member since 1999 and served in the awards committee.

Elected as chairman of AMECA (Mexican Association of Food Scientists) in 2015-2017. He was granted the city of Veracruz medal for Academic Merit in 2003 and the State Award of Science in 2006. He serves in the editorial board of the Mexican Journal of Chemical Engineering and the Mexican Phytotechnology Journal (both JCR).

His international collaborations include works with colleagues from the Volcani Center (Israel), Oviedo University (Spain) the University of Wisconsin-Madison, the Institutes for Catalysis and Food Science, and the School of Medicine of the Autonomous University of Madrid in Spain, Korea University and Bologna University. Prof. Garcia’s research interests include lipid biotechnology, nanoemulsions as carriers for bioactive compounds, dairy products, probiotic bacteria, cholesterol oxides, antioxidants in colored produce and post-harvest handling of tropical fruits.

Citas

Ali, S., Khan, A. S., Malik, A. U., Anwar, R., Anjum, M. A., Nawaz, A. and Naz, S. 2021. Combined application of ascorbic and oxalic acids delays postharvest browning of litchi fruits under controlled atmosphere conditions. Food Chemistry. 350: 129277.

Asrey, R., Barman, K., Prajapati, U., Sharma, S. and Yadav A. 2021. Genetically modified fruit and veg-etable-An overview on senescence regulation, postharvest nutraceutical quality preservation and shelf life extension. The Journal of Horticultural Science and Biotechnolgy. 96:271-287.

Bo, Z., Xian, L. and Kun-Song, C. 2008. Molecular cloning of lipoxygenase gene family members in ki-wifruit based on EST database. Acta Horticulturae Sinica. 35:337-342.

Ding, Z. S., Tian, S. P., Zheng, X. L., Zhou, Z. W. and Xu, Y. 2007. Responses of reactive oxygen me-tabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiologia Plantarum. 130:112-121.

Domínguez, I., Lafuente, M. T., Hernández-Muñoz, P. and Gavara, R. 2016. Influence of modified at-mosphere and ethylene levels on quality attributes of fresh tomatoes (Lycopersicon esculentum Mill.). Food Chemistry. 209:211-219.

Griffiths, A., Prestage, S., Linforth, R., Zhang, J., Taylor, A. and Grierson, D. 1999. Fruit-specific lipox-ygenase suppression in antisense-transgenic tomatoes. Postharvest Biology and Technology. 17: 163-173.

Hasan, M. U., Singh, Z., Shah, H. M. S., Kaur, J., Woodward, A., Afrifa-Yamoah, E., and Malik, A. U. 2023. Oxalic acid: A blooming organic acid for postharvest quality preservation of fresh fruit and vegetables. Postharvest Biology and Technology. 206: 112574.

Hu, T., Zeng, H., Hu, Z., Qv, X. and Chen, G. 2014. Simultaneous Silencing of Five Lipoxygenase Genes Increases the Contents of α-Linolenic and Linoleic Acids in Tomato (Solanum lycopersicum L.) Fruits. Journal of Agricultural and Food Chemistry. 62:11988-11993.

Huang, H., Jing, G., Guo, L., Zhang, D., Yang, B., Duan, X., Ashraf, M. and Jiang, Y. 2013. Effect of oxalic acid on ripening attributes of banana fruit during storage. Postharvest Biology and Technology. 84: 22-27.

Isack, M. E. and Lyimo, M. 2015. Effect of postharvest handling practices on physicochemical composition of tomato. International Journal of Vegetable Science. 21: 118-127.

Kalantari, S., Hatami, M. and Delshad, M. 2015. Diverse postharvest responses of tomato fruits at different maturity stages to hot water treatment. International Journal of Horticultural Science and Technology. 2: 67-74.

Kant, K., Arora, A., Singh, V. P. and Kumar, R. 2013. Effect of exogenous application of salicylic acid and oxalic acid on postharvest shelf-life of tomato (Solanum lycopersicon L.). Indian Journal of Plant Physiology. 18:15-21.

León-García, E., Vela-Gutiérrez, G., Del Ángel-Coronel, O. A., Torres-Palacios, C., De La Cruz-Medina, J., Gómez-Lim, M. A. and García, H. S. 2017. Increased postharvest life of TomLox B silenced mutants of tomato (Solanum lycopersicum) Var. TA234. Plant Foods for Human Nutrition. 72: 380-387.

Li, P., Yin, F., Song, L. and Zheng, X. 2016. Alleviation of chilling injury in tomato fruit by exogenous application of oxalic acid. Food Chemistry. 202:125-132.

Martínez‐Esplá, A., Serrano, M., Martínez‐Romero, D., Valero, D. and Zapata, P. J. 2019. Oxalic acid preharvest treatment increases antioxidant systems and improves plum quality at harvest and during postharvest storage. Journal of the Science of Food and Agriculture. 99:235-243.

Mazón-Abarca, W. M., León-García, E., Ramírez De León, J. A, De la Cruz Medina, J. and García, H. S. 2022a. Effect of hot water treatment on ripening of tomato var. TA234 silenced with the TomLoxB gene. CYTA-Journal of Food. 20:13-24.

Mazón-Abarca, W. M., León-García, E., Ramírez De León, J. A., De la Cruz Medina, J., García, H. S. 2022b. Extension of postharvest life by application of edible coatings on tomatoes var. 234 with si-lencing of the TomLoxb gene. The Journal of Horticultural Science and Biotechnology. 98: 355-364.

Nyanjage, M. O., Wainwright, H. and Bishop, C. F. H. 1999. Effects of hot-water treatment and storage temperature on electrolyte leakage of mangoes (Mangifera indica Linn.). The Journal of Horticultural Science and Biotechnology. 74: 566-572.

Pathare, P. B. and Al-Dairi, M. 2021. Bruise damage and quality changes in impact-bruised, stored toma-toes. Horticulturae. 7:113-132.

Pear, J. R., Sanders, R. A., Summerfelt, K. R., Martineau, B. and Hiatt W. R. 1993. Simultaneous inhibition of two tomato fruit cell wall hydrolases, pectinmethylesterase and polygalacturonase, with antisense gene constructs. Antisense Research and Development. 3:181-190.

Razavi, F., Hajilou, J., Dehgan, G. and Nagshi Band Hassani, R. 2017. Effect of postharvest oxalic acid treatment on ethylene production, quality parameters, and antioxidant potential of peach fruit during cold storage. Iran Journal of Plant Physiology. 7:2027-2036.

Razzaq, K., Khan, A. S., Malik, A. U., Shahid, M. and Ullah, S. 2015. Effect of oxalic acid application on Samar Bahisht Chaunsa mango during ripening and postharvest. LWT-Food Science and Technology. 63:152-160.

Shimada, M., Akamtsu, Y., Tokimatsu, T., Mii, K. and Hattori, T. 1997. Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. Journal of Biotechnology. 53:103-113.

Smith, D. L., Abbott, J. A. and Gross, K. C. 2002. Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiology. 129:1755-1762.

Sun, Q., Liu, L., Zhang, L., Lv, H., He, Q., Guo, L., Zhang, X., He, H., Ren, S., Zhang, N., Zhao, B. and Guo, Y. D. 2020. Melatonin promotes carotenoid biosynthesis in an ethylene-dependent manner in tomato fruits. Plant Science. 298:110580-110605.

Tarabih, M. E. 2014. Improving storability of Le Conte pear fruit using aminoethoxyvinylglycine (AVG) and oxalic acid (OA) under cold storage conditions. Asian Journal of Crop Science. 6:320-333.

Valero, D., Diaz-Mula, H. M., Zapata, P. J., Castillo, S., Guillen, F., Martinez-Romero, D. and Serrano, M. 2011. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. Journal of Agricultural and Food Chemistry. 59:5483-5489.

Velázquez-López, A. A, De la Cruz-Medina, J., García, H. S., Vela-Gutiérrez, G., Torres Palacios, C. and León-García, E. 2020. Lipoxygenase and Its Relationship with Ethylene During Ripening of Genet-ically Modified Tomato (Solanum lycopersicum). Food Technology and Biotechnology. 58: 223-229.

Wang, Q., Lai, T., Qin, G. and Tian, S. 2009. Response of jujube fruits to exogenous oxalic acid treatment based on proteomic analysis. Plant and Cell Physiology. 50:230-242.

Wu, F., Zhang, D., Zhang, H., Jiang, G., Su, X., Qu, H., Jiang, Y. and Duan, X. 2011. Physiological and biochemical response of harvested plum fruit to oxalic acid during ripening or shelf-life. Food Research International. 44:1299-1305.

Zheng, X., Tian, S., Gidley, M. J., Yue, H. and Li, B. 2007a. Effects of exogenous oxalic acid on ripening and decay incidence in mango fruit during storage at room temperature. Postharvest Biology and Technology. 45:281-284.

Zheng, X., Tian, S., Meng, X. and Li, B. 2007b. Physiological and biochemical responses in peach fruit to oxalic acid treatment during storage at room temperature. Food Chemistry. 104:156-162.

Zheng, X. L., Tian, S. P., Gidley, M. J., Yue, H., Li, B.Q., Xu, Y. and Zhou, Z. W. 2007c. Slowing the deterioration of mango fruit during cold storage by pre-storage application of oxalic acid. The Journal of Horticultural Science and Biotechnology. 82:707-714.

Resumen gráfico

Archivos adicionales

Publicado

2023-12-04

Cómo citar

Mazón-Abarca, W. M., León-García, E., Ramirez, J. A., & García, H. S. (2023). Efecto del ácido oxálico en la vida poscosecha del tomate modificado con el gen TomLoxB en antisentido: Ácido Oxálico en tomate modificado geneticamente. Biotecnia, 26, 26–32. https://doi.org/10.18633/biotecnia.v26i1.2101

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.