Effect of oxalic acid on postharvest life of tomato modified with the TomLoxB gene in anti-sense
Oxalic acid in GM tomato
DOI:
https://doi.org/10.18633/biotecnia.v26.2101Keywords:
Solanum lycopersicum, postharvest treatment, oxalic acid, tomato lipoxygenase B, electrolyte leakage, total phenolic contentAbstract
Oxalic acid is an organic compound found in green leafy vegetables, which has proven to be effective in delaying ripening by inhibiting ethylene synthesis in fruits such as banana, mango, peach, tomato, plum, and others. In this study, the response of oxalic acid application on postharvest physiology was evaluated in transgenic tomatoes (Solanum lycopersicum) variety TA234 with the TomLoxB gene insertion in antisense, at two concentrations of oxalic acid: 3 and 10 mM, during 30 d of storage at 25 ± 1 ºC and a relative humidity of 65 - 70 %. The fruits were harvested at break stage and immersed for 10 minutes in the oxalic acid solution, which was maintained at 25 ºC. Upon treatment, less weight loss, better retention of lightness, delay in the decrease of firmness and hue angle, decrease in lipoxygenase activity, low electrolyte leakage and increase in total phenolics content were observed. The most effective oxalic acid concentration was 3 mM, that extended postharvest life by up to 30 d and reduced deterioration of the genetically modified (GM) tomatoes. In turn, the untreated GM tomatoes showed an acceptable appearance up to day 24 of storage, while the wild type fruits were kept satisfactorily for 15 d.
Downloads
References
Ali, S., Khan, A. S., Malik, A. U., Anwar, R., Anjum, M. A., Nawaz, A. and Naz, S. 2021. Combined application of ascorbic and oxalic acids delays postharvest browning of litchi fruits under controlled atmosphere conditions. Food Chemistry. 350: 129277.
Asrey, R., Barman, K., Prajapati, U., Sharma, S. and Yadav A. 2021. Genetically modified fruit and veg-etable-An overview on senescence regulation, postharvest nutraceutical quality preservation and shelf life extension. The Journal of Horticultural Science and Biotechnolgy. 96:271-287.
Bo, Z., Xian, L. and Kun-Song, C. 2008. Molecular cloning of lipoxygenase gene family members in ki-wifruit based on EST database. Acta Horticulturae Sinica. 35:337-342.
Ding, Z. S., Tian, S. P., Zheng, X. L., Zhou, Z. W. and Xu, Y. 2007. Responses of reactive oxygen me-tabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiologia Plantarum. 130:112-121.
Domínguez, I., Lafuente, M. T., Hernández-Muñoz, P. and Gavara, R. 2016. Influence of modified at-mosphere and ethylene levels on quality attributes of fresh tomatoes (Lycopersicon esculentum Mill.). Food Chemistry. 209:211-219.
Griffiths, A., Prestage, S., Linforth, R., Zhang, J., Taylor, A. and Grierson, D. 1999. Fruit-specific lipox-ygenase suppression in antisense-transgenic tomatoes. Postharvest Biology and Technology. 17: 163-173.
Hasan, M. U., Singh, Z., Shah, H. M. S., Kaur, J., Woodward, A., Afrifa-Yamoah, E., and Malik, A. U. 2023. Oxalic acid: A blooming organic acid for postharvest quality preservation of fresh fruit and vegetables. Postharvest Biology and Technology. 206: 112574.
Hu, T., Zeng, H., Hu, Z., Qv, X. and Chen, G. 2014. Simultaneous Silencing of Five Lipoxygenase Genes Increases the Contents of α-Linolenic and Linoleic Acids in Tomato (Solanum lycopersicum L.) Fruits. Journal of Agricultural and Food Chemistry. 62:11988-11993.
Huang, H., Jing, G., Guo, L., Zhang, D., Yang, B., Duan, X., Ashraf, M. and Jiang, Y. 2013. Effect of oxalic acid on ripening attributes of banana fruit during storage. Postharvest Biology and Technology. 84: 22-27.
Isack, M. E. and Lyimo, M. 2015. Effect of postharvest handling practices on physicochemical composition of tomato. International Journal of Vegetable Science. 21: 118-127.
Kalantari, S., Hatami, M. and Delshad, M. 2015. Diverse postharvest responses of tomato fruits at different maturity stages to hot water treatment. International Journal of Horticultural Science and Technology. 2: 67-74.
Kant, K., Arora, A., Singh, V. P. and Kumar, R. 2013. Effect of exogenous application of salicylic acid and oxalic acid on postharvest shelf-life of tomato (Solanum lycopersicon L.). Indian Journal of Plant Physiology. 18:15-21.
León-García, E., Vela-Gutiérrez, G., Del Ángel-Coronel, O. A., Torres-Palacios, C., De La Cruz-Medina, J., Gómez-Lim, M. A. and García, H. S. 2017. Increased postharvest life of TomLox B silenced mutants of tomato (Solanum lycopersicum) Var. TA234. Plant Foods for Human Nutrition. 72: 380-387.
Li, P., Yin, F., Song, L. and Zheng, X. 2016. Alleviation of chilling injury in tomato fruit by exogenous application of oxalic acid. Food Chemistry. 202:125-132.
Martínez‐Esplá, A., Serrano, M., Martínez‐Romero, D., Valero, D. and Zapata, P. J. 2019. Oxalic acid preharvest treatment increases antioxidant systems and improves plum quality at harvest and during postharvest storage. Journal of the Science of Food and Agriculture. 99:235-243.
Mazón-Abarca, W. M., León-García, E., Ramírez De León, J. A, De la Cruz Medina, J. and García, H. S. 2022a. Effect of hot water treatment on ripening of tomato var. TA234 silenced with the TomLoxB gene. CYTA-Journal of Food. 20:13-24.
Mazón-Abarca, W. M., León-García, E., Ramírez De León, J. A., De la Cruz Medina, J., García, H. S. 2022b. Extension of postharvest life by application of edible coatings on tomatoes var. 234 with si-lencing of the TomLoxb gene. The Journal of Horticultural Science and Biotechnology. 98: 355-364.
Nyanjage, M. O., Wainwright, H. and Bishop, C. F. H. 1999. Effects of hot-water treatment and storage temperature on electrolyte leakage of mangoes (Mangifera indica Linn.). The Journal of Horticultural Science and Biotechnology. 74: 566-572.
Pathare, P. B. and Al-Dairi, M. 2021. Bruise damage and quality changes in impact-bruised, stored toma-toes. Horticulturae. 7:113-132.
Pear, J. R., Sanders, R. A., Summerfelt, K. R., Martineau, B. and Hiatt W. R. 1993. Simultaneous inhibition of two tomato fruit cell wall hydrolases, pectinmethylesterase and polygalacturonase, with antisense gene constructs. Antisense Research and Development. 3:181-190.
Razavi, F., Hajilou, J., Dehgan, G. and Nagshi Band Hassani, R. 2017. Effect of postharvest oxalic acid treatment on ethylene production, quality parameters, and antioxidant potential of peach fruit during cold storage. Iran Journal of Plant Physiology. 7:2027-2036.
Razzaq, K., Khan, A. S., Malik, A. U., Shahid, M. and Ullah, S. 2015. Effect of oxalic acid application on Samar Bahisht Chaunsa mango during ripening and postharvest. LWT-Food Science and Technology. 63:152-160.
Shimada, M., Akamtsu, Y., Tokimatsu, T., Mii, K. and Hattori, T. 1997. Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. Journal of Biotechnology. 53:103-113.
Smith, D. L., Abbott, J. A. and Gross, K. C. 2002. Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiology. 129:1755-1762.
Sun, Q., Liu, L., Zhang, L., Lv, H., He, Q., Guo, L., Zhang, X., He, H., Ren, S., Zhang, N., Zhao, B. and Guo, Y. D. 2020. Melatonin promotes carotenoid biosynthesis in an ethylene-dependent manner in tomato fruits. Plant Science. 298:110580-110605.
Tarabih, M. E. 2014. Improving storability of Le Conte pear fruit using aminoethoxyvinylglycine (AVG) and oxalic acid (OA) under cold storage conditions. Asian Journal of Crop Science. 6:320-333.
Valero, D., Diaz-Mula, H. M., Zapata, P. J., Castillo, S., Guillen, F., Martinez-Romero, D. and Serrano, M. 2011. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. Journal of Agricultural and Food Chemistry. 59:5483-5489.
Velázquez-López, A. A, De la Cruz-Medina, J., García, H. S., Vela-Gutiérrez, G., Torres Palacios, C. and León-García, E. 2020. Lipoxygenase and Its Relationship with Ethylene During Ripening of Genet-ically Modified Tomato (Solanum lycopersicum). Food Technology and Biotechnology. 58: 223-229.
Wang, Q., Lai, T., Qin, G. and Tian, S. 2009. Response of jujube fruits to exogenous oxalic acid treatment based on proteomic analysis. Plant and Cell Physiology. 50:230-242.
Wu, F., Zhang, D., Zhang, H., Jiang, G., Su, X., Qu, H., Jiang, Y. and Duan, X. 2011. Physiological and biochemical response of harvested plum fruit to oxalic acid during ripening or shelf-life. Food Research International. 44:1299-1305.
Zheng, X., Tian, S., Gidley, M. J., Yue, H. and Li, B. 2007a. Effects of exogenous oxalic acid on ripening and decay incidence in mango fruit during storage at room temperature. Postharvest Biology and Technology. 45:281-284.
Zheng, X., Tian, S., Meng, X. and Li, B. 2007b. Physiological and biochemical responses in peach fruit to oxalic acid treatment during storage at room temperature. Food Chemistry. 104:156-162.
Zheng, X. L., Tian, S. P., Gidley, M. J., Yue, H., Li, B.Q., Xu, Y. and Zhou, Z. W. 2007c. Slowing the deterioration of mango fruit during cold storage by pre-storage application of oxalic acid. The Journal of Horticultural Science and Biotechnology. 82:707-714.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.