Diferenciación de mezcales de cuatro especies de agave usando FT-MIR y análisis estadístico multivariado

Autores/as

  • Rosa López Aguilar Universidad Autónoma Chapingo
  • Emanuel Hernández Núñez CINVESTAV-Mérida
  • Arturo Hernández Montes https://orcid.org/0000-0003-1502-3101
  • Holber Zuleta Prada Universidad Autónoma Chapingo
  • José Enrique Herbert Pucheta Instituto Politécnico Nacional

DOI:

https://doi.org/10.18633/biotecnia.v26.2210

Palabras clave:

Mezcal, agave, discriminación, espectroscopía

Resumen

Espectrofotometría Infrarroja en la región media con Transformada de Fourier (FT-MIR) y análisis estadístico multivariado fueron utilizados para diferenciar mezcales elaborados con cuatro especies de agave. La matriz de datos FT-MIR fue sometida a transformaciones espectrales mediante primera y segunda derivada. El Análisis Discriminante por Mínimos Cuadrados Parciales (PLS) a partir de datos transformados con primera y segunda derivada permitió la diferenciación de mezcales. En tanto, el Análisis Discriminante mediante Mínimos Cuadrados Parciales Ortogonales (OPLS-DA) fue más robusto cuando se analizó con los datos de segunda derivada. Las comparaciones pareadas mediante OPLS-DA permitió la discriminación adecuada de los mezcales, principalmente entre Agave karwinskii y Agave potatorum (Q2 = 0.654 and p-value < 0.01; R2Y = 0.985 and p-value < 0.01) y entre Agave angustifolia y Agave karwinskii (Q2 = 0.563 and p-value = 0.01; R2Y = 0.989 and p-value = 0.01). La espectrofotometría FT-MIR y la Regresión PLS (PLS-R) lograron predecir el porcentaje de etanol (% v/v) en los mezcales colectados en 2022 con base en el modelo PLS-R previamente generado con muestras evaluadas en 2021.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Almeida, F.S., de Andrade Silva, C.A., Lima, S.M., Suarez, Y.R., da Cunha Andrade, L.H. 2018. Use of Fourier transform infrared spectroscopy to monitor sugars in the beer mashing process. Food Chemis-try. 263, 112–118. DOI: https://doi.org/10.1016/j.foodchem.2018.04.109

Anjos, O., Santos, A.J.A., Estevinho, L.M., Caldeira, I. 2016. FTIR–ATR spectroscopy applied to quality control of grape-derived spirits. Food Chemistry. 205, 28–35. DOI: https://doi.org/10.1016/j.foodchem.2016.02.128

Arslan, M., Tahir, H.E., Zareef, M., Shi, J., Rakha, A., Bilal, M., Xiaowei, H., Zhihua, L., Xiaobo, Z. 2021. Recent trends in quality control, discrimination and authentication of alcoholic beverages using nonde-structive instrumental techniques. Trends in Food Science & Technology. 107, 80–113. DOI: https://doi.org/10.1016/j.tifs.2020.11.021

Barraza-Soto, S., Domínguez-Calleros, P.A., Montiel-Antuna, E., Díaz-Vásquez, M., Návar-Chaidez, J. 2014. La producción de mezcal en el municipio de Durango, México. Sociedad, Cultura y Desarrollo Sustentable. 10(6), 65–74. DOI: https://doi.org/10.35197/rx.10.03.e2.2014.06.sb

Castañeda-Nava, J.J., Rodríguez-Domínguez, J.M., Camacho-Ruiz, R.M., Gallardo-Valdez, J., Villegas-García, E., Gutiérrez-Mora, A. 2019. Morphological comparison among populations of Aga-ve salmiana Otto ex Salm-Dyck (Asparagaceae), a species used for mezcal production in Mexico. Flora. 255, 18–23. DOI: https://doi.org/10.1016/j.flora.2019.03.019

Cavaglia, J., Schorn-García, D., Giussani, B., Ferré, J., Busto, O., Aceña, L., Mestres, M., Boqué, R. 2020. ATR-MIR spectroscopy and multivariate analysis in alcoholic fermentation monitoring and lactic acid bacteria spoilage detection. Food Control. 109, 106947. DOI: https://doi.org/10.1016/j.foodcont.2019.106947

Chong, J., Wishart, D.S., Xia, J. 2019. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Current Protocols in Bioinformatics. 68(1). DOI: https://doi.org/10.1002/cpbi.86

COMERCAM. 2022. Informe estadístico 2022.

Cozzolino, D., Cynkar, W., Shah, N., Smith, P. 2011. Feasibility study on the use of attenuated total reflec-tance mid-infrared for analysis of compositional parameters in wine. Food Research International. 44(1), 181–186. DOI: https://doi.org/10.1016/j.foodres.2010.10.043

Dasenaki, M.E., Drakopoulou, S.K., Aalizadeh, R., Thomaidis, N.S. 2019. Targeted and Untargeted Metabolomics as an Enhanced Tool for the Detection of Pomegranate Juice Adulteration. Foods. 8(6), 212. DOI: https://doi.org/10.3390/foods8060212

Debebe, A., Anberbir, A., Redi-Abshiro, M., Chandravanshi, B.S., Asfaw, A., Asfaw, N., Retta, N. 2017. Alcohol Determination in Distilled Alcoholic Beverages by Liquid Phase Fourier Transform Mid-Infrared and Near-Infrared Spectrophotometries. Food Analytical Methods. 10(1), 172–179. DOI: https://doi.org/10.1007/s12161-016-0566-7

Dirección General de Normas, 2016. NOM-070-SCFI. Bebidas Alcohólicas-Mezcal-Especificaciones.

Dirección General de Normas, 2019. NMX-V-013-NORMEX-Bebidas Alcohólicas-Determinación del Contenido Alcohólico.

Esbensen, H.K. 2002. Multivariate Data Analysis- In practice. An introduction to multivariate data analysis and experimental design. USA.

Espejel-García, A., Barrera-Rodríguez, A., Ramírez-García, A.G., Cuevas-Reyes, V. 2019. Innovación en la cadena agroindustrial de mezcal en tres municipios en Oaxaca, México. Revista Venezolana de Gerencia, 24(2): 188-209.

Esteki, M., Simal-Gandara, J., Shahsavari, Z., Zandbaaf, S., Dashtaki, E., Vander Heyden, Y. 2018. A re-view on the application of chromatographic methods, coupled to chemometrics, for food authentication. Food Control. 93, 165–182. DOI: https://doi.org/10.1016/j.foodcont.2018.06.015

Fernandez-Lozano, C., Gestal-Pose, M., Pérez-Caballero, G., Revilla-Vázquez, A.L., Andrade-Garda, J.M. 2019. Multivariate Classification Techniques to Authenticate Mexican Commercial Spirits. Quality Control in the Beverage Industry. 17, 259–287. DOI: https://doi.org/10.1016/B978-0-12-816681-9.00008-4

Formosa, J.P., Lia, F., Mifsud, D., Farrugia, C. 2020. Application of ATR-FT-MIR for Tracing the Geo-graphical Origin of Honey Produced in the Maltese Islands. Foods. 9, 710. DOI: https://doi.org/10.3390/foods9060710

García-Mendoza, A. 2012. México, país de magueyes. La Jornada. 53.

Gaytán, M.S. 2018. The perils of protection and the promise of authenticity: Tequila, mezcal, and the case of NOM 186. Journal of Rural Studies. 58, 103–111. DOI: https://doi.org/10.1016/j.jrurstud.2017.12.017

Ghosh, T., Zhang, W., Ghosh, D., Kechris, K. 2020. Predictive Modeling for Metabolomics Data. Methods in Molecular Biology. 2104, 313–336. DOI: https://doi.org/10.1007/978-1-0716-0239-3_16

Godínez-Hernández, C.I., Aguirre-Rivera, J.R., Juárez-Flores, B.I., Ortiz-Pérez, M.D., Becerra-Jiménez, J. 2015. Extraction and characterization of Agave salmiana Otto ex Salm-Dyck fructans. Revista Chapingo serie ciencias forestales y del ambiente. 22(1), 59–72. DOI: https://doi.org/10.5154/r.rchscfa.2015.02.007

Gougeon, L., Da Costa, G., Le Mao, I., Ma, W., Teissedre, P.-L., Guyon, F., Richard, T. 2018. Wine Analysis and Authenticity Using 1H-NMR Metabolomics Data: Application to Chinese Wines. Food Analytical Methods. 11(12), 3425–3434. DOI: https://doi.org/10.1007/s12161-018-1310-2

Haq, Q.M.I., Mabood, F., Naureen, Z., Al-Harrasi, A., Gilani, S.A., Hussain, J., Jabeen, F., Khan, A., Al-Sabari, R.S.M., Al-khanbashi, F.H.S., Al-Fahdi, A.A.M., Al-Zaabi, A.K.A., Al-Shuraiqi, F.A.M., Al-Bahaisi, I.M. 2018. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves. Spectrochimica Acta. 198, 27–32. DOI: https://doi.org/10.1016/j.saa.2018.02.065

Herbert-Pucheta, J.E., Lozada-Ramírez, J.D., Ortega-Regules, A.E., Hernández, L.R., Anaya de Parrodi, C. 2021. Nuclear Magnetic Resonance Metabolomics with Double Pulsed-Field-Gradient Echo and Au-tomatized Solvent Suppression Spectroscopy for Multivariate Data Matrix Applied in Novel Wine and Juice Discriminant Analysis. Molecules. 26(14), 4146. DOI: https://doi.org/10.3390/molecules26144146

Hernández-López, J. de J. 2018. El mezcal como patrimonio social: de indicaciones geográficas genéricas a denominaciones de origen regionales. Em Questão. 24(2), 404. DOI: https://doi.org/10.19132/1808-5245242.404-433

Hernández-López, J. de J. 2019. Mexican mezcales: The importance of their protection as social heritage. Revista de Antropologia. 20(2), 179–205. DOI: https://doi.org/10.5007/2175-8034.2018v20n2p179

Hu, B., Yue, Y., Zhu, Y., Wen, W., Zhang, F., Hardie, J.W. 2015. Proton Nuclear Magnetic Reso-nance-Spectroscopic Discrimination of Wines Reflects Genetic Homology of Several Different Grape (V. vinifera L.) Cultivars. PLoS One. 10(12), e0142840. DOI: https://doi.org/10.1371/journal.pone.0142840

Kamruzzaman, M. 2021. Chemical imaging in food authentication. Food Authentication and Traceability. 131–161. DOI: https://doi.org/10.1016/B978-0-12-821104-5.00007-6

Lachenmeier, D.W. 2007. Rapid quality control of spirit drinks and beer using multivariate data analysis of Fourier transform infrared spectra. Food Chemistry. 101(2), 825–832. DOI: https://doi.org/10.1016/j.foodchem.2005.12.032

Lachenmeier, D.W., Richling, E., G. López, M., Frank, W., Schreier, P. 2005. Multivariate Analysis of FTIR and Ion Chromatographic Data for the Quality Control of Tequila. Journal of Agricultural and Food Chemistry. 53(6), 2151–2157. DOI: https://doi.org/10.1021/jf048637f

Llario, R., Iñón, F.A., Garrigues, S., De La Guardia, M. 2006. Determination of quality parameters of beers by the use of attenuated total reflectance-Fourier transform infrared spectroscopy. Talanta. 69(2), 469–480. DOI: https://doi.org/10.1016/j.talanta.2005.10.016

López-Aguilar, R., Zuleta-Prada, H., Hernández-Montes, A., Herbert-Pucheta, J.E. 2021. Comparative NMR Metabolomics Profiling between Mexican Ancestral & Artisanal Mezcals and Industrialized Wines to Discriminate Geographical Origins, Agave Species or Grape Varieties and Manufacturing Processes as a Function of Their Quality Attributes. Foods. 10(1), 157. DOI: https://doi.org/10.3390/foods10010157

López-Nava, G., Martínez-Flores, J.L., Cavazos-Arroyo, J., Moreno-Mayett, Y. 2012. La cadena de suministro del mezcal del estado de Zacatecas Situación actual y perspectivas de desarrollo. Contaduría y Administración. 59(2), 227–252. DOI: https://doi.org/10.1016/S0186-1042(14)71261-6

Mondragón-Cortez, P., Herrera-López, E., Arriola-Guevara, E., Guatemala-Morales, G. 2022. Application of Fourier transform infrared spectroscopy (FTIR) in combination with attenuated total reflection (ATR) for rapid analysis of the tequila production process. Revista Mexicana de Ingeniería Química. 21(3). DOI: https://doi.org/10.24275/rmiq/Alim2806

Niimi, J., Liland, K.H., Tomic, O., Jeffery, D.W., Bastian, S.E.P., Boss, P.K. 2021. Prediction of wine sensory properties using mid-infrared spectra of Cabernet Sauvignon and Chardonnay grape berries and wines. Food Chemistry. 344, 128634. DOI: https://doi.org/10.1016/j.foodchem.2020.128634

Nolasco-Cancino, H., Jarquín-Martínez, D., Ruiz Terán, F., Santiago-Urbina, J. 2022. Behavior of the vol-atile compounds regulated by the Mexican Official Standard NOM-070-SCFI-2016 during the distilla-tion of artisanal Mezcal. Biotecnia. 24(2). DOI: https://doi.org/10.18633/biotecnia.v24i2.1577

Pang, Z., Chong, J., Zhou, G., de Lima Morais, D.A., Chang, L., Barrette, M., Gauthier, C., Jacques, P.-É., Li, S., Xia, J. 2021. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional in-sights. Nucleic Acids Research. 49, W388–W396. DOI: https://doi.org/10.1093/nar/gkab382

Quintero-Arenas, M.A., Meza-Márquez, O.G., Velázquez-Hernández, J.L., Gallardo-Velázquez, T., Osorio-Revilla, G. 2020. Quantification of adulterants in mezcal by means of FT-MIR and FT-NIR spectroscopy coupled to multivariate analysis. CyTA - Journal of Food. 18(1), 229–239. DOI: https://doi.org/10.1080/19476337.2020.1740327

Rios-Colín, A.C., Ruiz-Vega, J., Silva-Rivera, M.E., Caballero-Caballero, M., Montes-Bernabé, J.L. 2022. Evaluación longitudinal de la sustentabilidad del subsistema de producción maguey-mezcal artesanal, en el municipio de Villa Sola de Vega, Oaxaca, México. Tropical and Subtropical Agroecosystems. 25(1). DOI: https://doi.org/10.56369/tsaes.4105

Sánchez-Gómez, J., Pardo-Núñez, J., Cuevas-Reyes, V., Romero- Romero, Y. 2022. Characteristics and socio-productive problems of women mezcal producers in Oaxaca, México. Agro Productividad. 3. DOI: https://doi.org/10.32854/agrop.v15i3.2134

Silva, S.D., Feliciano, R.P., Boas, L. V., Bronze, M.R. 2014. Application of FTIR-ATR to Moscatel des-sert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chemistry. 150, 489–493. DOI: https://doi.org/10.1016/j.foodchem.2013.11.028

Szymańska, E., Saccenti, E., Smilde, A.K., Westerhuis, J.A. 2012. Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics. 8(S1), 3–16. DOI: https://doi.org/10.1007/s11306-011-0330-3

Tabago, M.K.A.G., Calingacion, M.N., Garcia, J. 2021. Recent advances in NMR-based metabolomics of alcoholic beverages. Food Chemistry: Molecular Sciences. 2, 100009. DOI: https://doi.org/10.1016/j.fochms.2020.100009

Van den Berg, R.A., Hoefsloot, H.C., Westerhuis, J.A., Smilde, A.K., van der Werf, M.J. 2006. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 7, 142. DOI: https://doi.org/10.1186/1471-2164-7-142

Vázquez-Pérez, N., Blancas, J., Torres-García, I., García-Mendoza, A., Casas, A., Moreno-Calles, A.I., Maldonado-Almanza, B., Rendón-Aguilar, B. 2020. Conocimiento y manejo tradicional de Agave karwinskii en el sur de México. Botanical Sciences. 98(2), 328–347. DOI: https://doi.org/10.17129/botsci.2421

Vera-Guzmán, A., Guzmán-Gerónimo, R., López, M. 2010. Major and Minor Compounds in a Mexican Spirit, Young Mezcal Coming from Two Agave Species, Czech Journal of Food Sciences. 28(2), 127-132. DOI: https://doi.org/10.17221/56/2009-CJFS

Vera-Guzmán, A., Guzmán-Gerónimo, R., López, M., Chávez-Servia, J. 2018. Volatile Compound Profiles in Mezcal Spirits as Influenced by Agave Species and Production Processes. Beverages. 4(1), 9. DOI: https://doi.org/10.3390/beverages4010009

Westerhuis, J.A., van Velzen, E.J.J., Hoefsloot, H.C.J., Smilde, A.K. 2008. Discriminant Q2 (DQ2) for improved discrimination in PLSDA models. Metabolomics. 4(4), 293–296. DOI: https://doi.org/10.1007/s11306-008-0126-2

Windig, W., Shaver, J., Bro, R. 2008. Loopy MSC: A Simple Way to Improve Multiplicative Scatter Cor-rection. Applied Spectroscopy. 62(10), 1153–1159. DOI: https://doi.org/10.1366/000370208786049097

Wu, Z., Xu, E., Long, J., Zhang, Y., Wang, F., Xu, X., Jin, Z., Jiao, A. 2015. Monitoring of fermentation process parameters of Chinese rice wine using attenuated total reflectance mid-infrared spectroscopy. Food Control. 50, 405–412. DOI: https://doi.org/10.1016/j.foodcont.2014.09.028

Yadav, P.K., Sharma, R.M. 2019. Classification of illicit liquors based on their geographic origin using Attenuated total reflectance (ATR) – Fourier transform infrared (FT-IR) spectroscopy and chemomet-rics. Forensic Science International. 295, e1–e5. DOI: https://doi.org/10.1016/j.forsciint.2018.12.017

Resumen gráfico

Descargas

Archivos adicionales

Publicado

2024-05-02

Cómo citar

López Aguilar, R., Hernández Núñez, E., Hernández Montes, A., Zuleta Prada, H., & Herbert Pucheta, J. E. (2024). Diferenciación de mezcales de cuatro especies de agave usando FT-MIR y análisis estadístico multivariado. Biotecnia, 26, 293–305. https://doi.org/10.18633/biotecnia.v26.2210

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.