Differentiation of mezcales from four agave species using FT-MIR and multivariate statistical analysis

Authors

  • Rosa López Aguilar Universidad Autónoma Chapingo
  • Emanuel Hernández Núñez CINVESTAV-Mérida
  • Arturo Hernández Montes Universidad Autónoma Chapingo
  • Holber Zuleta Prada Universidad Autónoma Chapingo
  • José Enrique Herbert Pucheta Instituto Politécnico Nacional

DOI:

https://doi.org/10.18633/biotecnia.v26.2210

Keywords:

Mezcal, agave, discrimination, spectroscopy

Abstract

Fourier Transform Mid-Infrared (FT-MIR) spectroscopy and multivariate statistical analysis were used to differentiate mezcales elaborated with four agave species. The FT-MIR data matrix was subjected to spectral transformations using first and second derivatives. The Partial Least Squares (PLS)-Discriminant Analysis (DA) with the matrix transformed by the first and second derivative allowed the differentiation of mezcales. While Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) was more robust when it was analyzed with second-derivative data. Pairwise comparisons by OPLS-DA allowed mezcales to be correctly discriminated, mainly between Agave karwinskii and Agave potatorum (Q2 = 0.654 and p – value < 0.01; R2Y = 0.985 and p-value < 0.01) and between Agave angustifolia and Agave karwinskii (Q2 = 0.563 and p-value = 0.01; R2Y = 0.989 and p-value = 0.01). FT-MIR spectrophotometry and the PLS-Regression (PLS-R) were applied to predict the ethanol percentage (% v/v) of mezcales collected in 2022 based on the PLS-R model previously run on samples evaluated in 2021.

Downloads

Download data is not yet available.

References

Almeida, F.S., de Andrade Silva, C.A., Lima, S.M., Suarez, Y.R., da Cunha Andrade, L.H. 2018. Use of Fourier transform infrared spectroscopy to monitor sugars in the beer mashing process. Food Chemis-try. 263, 112–118.

Anjos, O., Santos, A.J.A., Estevinho, L.M., Caldeira, I. 2016. FTIR–ATR spectroscopy applied to quality control of grape-derived spirits. Food Chemistry. 205, 28–35.

Arslan, M., Tahir, H.E., Zareef, M., Shi, J., Rakha, A., Bilal, M., Xiaowei, H., Zhihua, L., Xiaobo, Z. 2021. Recent trends in quality control, discrimination and authentication of alcoholic beverages using nonde-structive instrumental techniques. Trends in Food Science & Technology. 107, 80–113.

Barraza-Soto, S., Domínguez-Calleros, P.A., Montiel-Antuna, E., Díaz-Vásquez, M., Návar-Chaidez, J. 2014. La producción de mezcal en el municipio de Durango, México. Sociedad, Cultura y Desarrollo Sustentable. 10(6), 65–74.

Castañeda-Nava, J.J., Rodríguez-Domínguez, J.M., Camacho-Ruiz, R.M., Gallardo-Valdez, J., Villegas-García, E., Gutiérrez-Mora, A. 2019. Morphological comparison among populations of Aga-ve salmiana Otto ex Salm-Dyck (Asparagaceae), a species used for mezcal production in Mexico. Flora. 255, 18–23.

Cavaglia, J., Schorn-García, D., Giussani, B., Ferré, J., Busto, O., Aceña, L., Mestres, M., Boqué, R. 2020. ATR-MIR spectroscopy and multivariate analysis in alcoholic fermentation monitoring and lactic acid bacteria spoilage detection. Food Control. 109, 106947.

Chong, J., Wishart, D.S., Xia, J. 2019. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Current Protocols in Bioinformatics. 68(1).

COMERCAM. 2022. Informe estadístico 2022.

Cozzolino, D., Cynkar, W., Shah, N., Smith, P. 2011. Feasibility study on the use of attenuated total reflec-tance mid-infrared for analysis of compositional parameters in wine. Food Research International. 44(1), 181–186.

Dasenaki, M.E., Drakopoulou, S.K., Aalizadeh, R., Thomaidis, N.S. 2019. Targeted and Untargeted Metabolomics as an Enhanced Tool for the Detection of Pomegranate Juice Adulteration. Foods. 8(6), 212.

Debebe, A., Anberbir, A., Redi-Abshiro, M., Chandravanshi, B.S., Asfaw, A., Asfaw, N., Retta, N. 2017. Alcohol Determination in Distilled Alcoholic Beverages by Liquid Phase Fourier Transform Mid-Infrared and Near-Infrared Spectrophotometries. Food Analytical Methods. 10(1), 172–179.

Dirección General de Normas, 2016. NOM-070-SCFI. Bebidas Alcohólicas-Mezcal-Especificaciones.

Dirección General de Normas, 2019. NMX-V-013-NORMEX-Bebidas Alcohólicas-Determinación del Contenido Alcohólico.

Esbensen, H.K. 2002. Multivariate Data Analysis- In practice. An introduction to multivariate data analysis and experimental design. USA.

Espejel-García, A., Barrera-Rodríguez, A., Ramírez-García, A.G., Cuevas-Reyes, V. 2019. Innovación en la cadena agroindustrial de mezcal en tres municipios en Oaxaca, México. Revista Venezolana de Gerencia, 24(2): 188-209.

Esteki, M., Simal-Gandara, J., Shahsavari, Z., Zandbaaf, S., Dashtaki, E., Vander Heyden, Y. 2018. A re-view on the application of chromatographic methods, coupled to chemometrics, for food authentication. Food Control. 93, 165–182.

Fernandez-Lozano, C., Gestal-Pose, M., Pérez-Caballero, G., Revilla-Vázquez, A.L., Andrade-Garda, J.M. 2019. Multivariate Classification Techniques to Authenticate Mexican Commercial Spirits. Quality Control in the Beverage Industry. 17, 259–287.

Formosa, J.P., Lia, F., Mifsud, D., Farrugia, C. 2020. Application of ATR-FT-MIR for Tracing the Geo-graphical Origin of Honey Produced in the Maltese Islands. Foods. 9, 710.

García-Mendoza, A. 2012. México, país de magueyes. La Jornada. 53.

Gaytán, M.S. 2018. The perils of protection and the promise of authenticity: Tequila, mezcal, and the case of NOM 186. Journal of Rural Studies. 58, 103–111.

Ghosh, T., Zhang, W., Ghosh, D., Kechris, K. 2020. Predictive Modeling for Metabolomics Data. Methods in Molecular Biology. 2104, 313–336.

Godínez-Hernández, C.I., Aguirre-Rivera, J.R., Juárez-Flores, B.I., Ortiz-Pérez, M.D., Becerra-Jiménez, J. 2015. Extraction and characterization of Agave salmiana Otto ex Salm-Dyck fructans. Revista Chapingo serie ciencias forestales y del ambiente. 22(1), 59–72.

Gougeon, L., Da Costa, G., Le Mao, I., Ma, W., Teissedre, P.-L., Guyon, F., Richard, T. 2018. Wine Analysis and Authenticity Using 1H-NMR Metabolomics Data: Application to Chinese Wines. Food Analytical Methods. 11(12), 3425–3434.

Haq, Q.M.I., Mabood, F., Naureen, Z., Al-Harrasi, A., Gilani, S.A., Hussain, J., Jabeen, F., Khan, A., Al-Sabari, R.S.M., Al-khanbashi, F.H.S., Al-Fahdi, A.A.M., Al-Zaabi, A.K.A., Al-Shuraiqi, F.A.M., Al-Bahaisi, I.M. 2018. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves. Spectrochimica Acta. 198, 27–32.

Herbert-Pucheta, J.E., Lozada-Ramírez, J.D., Ortega-Regules, A.E., Hernández, L.R., Anaya de Parrodi, C. 2021. Nuclear Magnetic Resonance Metabolomics with Double Pulsed-Field-Gradient Echo and Au-tomatized Solvent Suppression Spectroscopy for Multivariate Data Matrix Applied in Novel Wine and Juice Discriminant Analysis. Molecules. 26(14), 4146.

Hernández-López, J. de J. 2018. El mezcal como patrimonio social: de indicaciones geográficas genéricas a denominaciones de origen regionales. Em Questão. 24(2), 404.

Hernández-López, J. de J. 2019. Mexican mezcales: The importance of their protection as social heritage. Revista de Antropologia. 20(2), 179–205.

Hu, B., Yue, Y., Zhu, Y., Wen, W., Zhang, F., Hardie, J.W. 2015. Proton Nuclear Magnetic Reso-nance-Spectroscopic Discrimination of Wines Reflects Genetic Homology of Several Different Grape (V. vinifera L.) Cultivars. PLoS One. 10(12), e0142840.

Kamruzzaman, M. 2021. Chemical imaging in food authentication. Food Authentication and Traceability. 131–161.

Lachenmeier, D.W. 2007. Rapid quality control of spirit drinks and beer using multivariate data analysis of Fourier transform infrared spectra. Food Chemistry. 101(2), 825–832.

Lachenmeier, D.W., Richling, E., G. López, M., Frank, W., Schreier, P. 2005. Multivariate Analysis of FTIR and Ion Chromatographic Data for the Quality Control of Tequila. Journal of Agricultural and Food Chemistry. 53(6), 2151–2157.

Llario, R., Iñón, F.A., Garrigues, S., De La Guardia, M. 2006. Determination of quality parameters of beers by the use of attenuated total reflectance-Fourier transform infrared spectroscopy. Talanta. 69(2), 469–480.

López-Aguilar, R., Zuleta-Prada, H., Hernández-Montes, A., Herbert-Pucheta, J.E. 2021. Comparative NMR Metabolomics Profiling between Mexican Ancestral & Artisanal Mezcals and Industrialized Wines to Discriminate Geographical Origins, Agave Species or Grape Varieties and Manufacturing Processes as a Function of Their Quality Attributes. Foods. 10(1), 157.

López-Nava, G., Martínez-Flores, J.L., Cavazos-Arroyo, J., Moreno-Mayett, Y. 2012. La cadena de suministro del mezcal del estado de Zacatecas Situación actual y perspectivas de desarrollo. Contaduría y Administración. 59(2), 227–252.

Mondragón-Cortez, P., Herrera-López, E., Arriola-Guevara, E., Guatemala-Morales, G. 2022. Application of Fourier transform infrared spectroscopy (FTIR) in combination with attenuated total reflection (ATR) for rapid analysis of the tequila production process. Revista Mexicana de Ingeniería Química. 21(3).

Niimi, J., Liland, K.H., Tomic, O., Jeffery, D.W., Bastian, S.E.P., Boss, P.K. 2021. Prediction of wine sensory properties using mid-infrared spectra of Cabernet Sauvignon and Chardonnay grape berries and wines. Food Chemistry. 344, 128634.

Nolasco-Cancino, H., Jarquín-Martínez, D., Ruiz Terán, F., Santiago-Urbina, J. 2022. Behavior of the vol-atile compounds regulated by the Mexican Official Standard NOM-070-SCFI-2016 during the distilla-tion of artisanal Mezcal. Biotecnia. 24(2).

Pang, Z., Chong, J., Zhou, G., de Lima Morais, D.A., Chang, L., Barrette, M., Gauthier, C., Jacques, P.-É., Li, S., Xia, J. 2021. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional in-sights. Nucleic Acids Research. 49, W388–W396.

Quintero-Arenas, M.A., Meza-Márquez, O.G., Velázquez-Hernández, J.L., Gallardo-Velázquez, T., Osorio-Revilla, G. 2020. Quantification of adulterants in mezcal by means of FT-MIR and FT-NIR spectroscopy coupled to multivariate analysis. CyTA - Journal of Food. 18(1), 229–239.

Rios-Colín, A.C., Ruiz-Vega, J., Silva-Rivera, M.E., Caballero-Caballero, M., Montes-Bernabé, J.L. 2022. Evaluación longitudinal de la sustentabilidad del subsistema de producción maguey-mezcal artesanal, en el municipio de Villa Sola de Vega, Oaxaca, México. Tropical and Subtropical Agroecosystems. 25(1).

Sánchez-Gómez, J., Pardo-Núñez, J., Cuevas-Reyes, V., Romero- Romero, Y. 2022. Characteristics and socio-productive problems of women mezcal producers in Oaxaca, México. Agro Productividad. 3.

Silva, S.D., Feliciano, R.P., Boas, L. V., Bronze, M.R. 2014. Application of FTIR-ATR to Moscatel des-sert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chemistry. 150, 489–493.

Szymańska, E., Saccenti, E., Smilde, A.K., Westerhuis, J.A. 2012. Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics. 8(S1), 3–16.

Tabago, M.K.A.G., Calingacion, M.N., Garcia, J. 2021. Recent advances in NMR-based metabolomics of alcoholic beverages. Food Chemistry: Molecular Sciences. 2, 100009.

Van den Berg, R.A., Hoefsloot, H.C., Westerhuis, J.A., Smilde, A.K., van der Werf, M.J. 2006. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 7, 142.

Vázquez-Pérez, N., Blancas, J., Torres-García, I., García-Mendoza, A., Casas, A., Moreno-Calles, A.I., Maldonado-Almanza, B., Rendón-Aguilar, B. 2020. Conocimiento y manejo tradicional de Agave karwinskii en el sur de México. Botanical Sciences. 98(2), 328–347.

Vera-Guzmán, A., Guzmán-Gerónimo, R., López, M. 2010. Major and Minor Compounds in a Mexican Spirit, Young Mezcal Coming from Two Agave Species, Czech Journal of Food Sciences. 28(2), 127-132.

Vera-Guzmán, A., Guzmán-Gerónimo, R., López, M., Chávez-Servia, J. 2018. Volatile Compound Profiles in Mezcal Spirits as Influenced by Agave Species and Production Processes. Beverages. 4(1), 9.

Westerhuis, J.A., van Velzen, E.J.J., Hoefsloot, H.C.J., Smilde, A.K. 2008. Discriminant Q2 (DQ2) for improved discrimination in PLSDA models. Metabolomics. 4(4), 293–296.

Windig, W., Shaver, J., Bro, R. 2008. Loopy MSC: A Simple Way to Improve Multiplicative Scatter Cor-rection. Applied Spectroscopy. 62(10), 1153–1159.

Wu, Z., Xu, E., Long, J., Zhang, Y., Wang, F., Xu, X., Jin, Z., Jiao, A. 2015. Monitoring of fermentation process parameters of Chinese rice wine using attenuated total reflectance mid-infrared spectroscopy. Food Control. 50, 405–412.

Yadav, P.K., Sharma, R.M. 2019. Classification of illicit liquors based on their geographic origin using Attenuated total reflectance (ATR) – Fourier transform infrared (FT-IR) spectroscopy and chemomet-rics. Forensic Science International. 295, e1–e5.

Graphical abstract

Downloads

Additional Files

Published

2024-05-02

How to Cite

López Aguilar, R., Hernández Núñez, E., Hernández Montes, A., Zuleta Prada, H., & Herbert Pucheta, J. E. (2024). Differentiation of mezcales from four agave species using FT-MIR and multivariate statistical analysis. Biotecnia, 26, e2210. https://doi.org/10.18633/biotecnia.v26.2210

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)