Perfil fitoquímico del fruto de Parmentiera aculeata (Kunth): una funete rica de compuestos nutraceuticos y nutrimentales
Perfil fitoquímico del fruto de Parmentiera aculeata
DOI:
https://doi.org/10.18633/biotecnia.v27.2556Palabras clave:
pepino kat, calidad de fruta, fitoquímica, medicina tradicional, perfil metabolómico no dirigidoResumen
El fruto de Parmentiera aculeata se ha utilizado localmente por sus propiedades medicinales, pero no se han caracterizado sus compuestos bioactivos. Así, para identificar y cuantificar sus compuestos nutracéuticos y nutricionales, utilizamos UPLC-Q-TOF-MS y metabolómica no dirigida, detectando 725 metabolitos, incluidos compuestos anticancerígenos (genkwanina, hespiridina y fenilcetaldoxima) y antidiabéticos (metformina). También utilizamos HPLC-DAD para cuantificar los compuestos fenólicos cianidina, catequina y ácidos p-cumárico, 4-hidroxibenzoico, gálico y clorogénico (50, 70, 80, 210, 220 y 340 µg.g–1 respectivamente) la GC-MS se utilizó para analizar el perfil vitamínico (contenido de β-caroteno < 2 ng.mg–1). La fructosa, la glucosa y la sacarosa se cuantificaron mediante HPLC-ELSD con 3.06, 2.77 y 78.0 mg.100 g–1, respectivamente. Los espectros de emisión atómica mostraron que los contenidos de K, Ca, P, Mg, Na, Fe, Zn fueron 13 261.37, 1 114.77, 1 048.27, 932.06, 300.53, 22.03 y 27.27 mg kg–1, respectivamente. Se identificaron y cuantificaron, palmítico, heptadecanoico, esteárico, oleico, linoleico, araquídico, linolénico, heneicosanoico y tricosanoico como los principales ácidos grasos utilizando una mezcla de 37 estándares. Estos hallazgos corroboran los aportes medicinales, nutracéuticos y nutricionales de esta versátil fruta que muestra su potencial como cultivo comestible de alto valor agregado.
Descargas
Citas
Agostoni, C., Moreno, L., y Shamir, R. (2016). Palmitic Acid and Health: Introduction: Critical Reviews in Food Science and Nutrition, 56:1941–1942. https://doi.org/10.1080/10408398.2015.1017435
Andrade-Cetto, A. Heinrich, M. (2005). Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology.doi.org/10.1016/j.jep.2005.04.019
Arsic, A., Stojanovik, A., Mikic, M. (2019). Oleic cid- Health Benefits and Status in Plasma Phospholipids in the Serbian Population. Experimental and Applied Biomedical Research (EABR). 20 (2):1-8
Ashani, Y & Silman, I. (2008). Hydroxylamines and oximes: Biological properties and potential uses as therapeutic agents. The chemistry of hydroxylamines, oximes and hydroxamic acids, 609-651. https://doi.org/10.1002/9780470682531.pat0465
Binukumar B., Mathew A. (2005). Dietary fat and risk of breast cancer. World Journal of Surgical Oncology. 18:45. doi:10.1186/1477-7819-3-45. C.
Buczynski, M.W., Dumlao DS, Dennis E.A. (2009). Thematic Review Series: proteomics. An integrated omics analysis of eicosanoid biology1 [S]. Journal of Lipid Research 50(6):1015–1038.
Chinaza, A., Igwe, V.S., Otuosorochi, Amagwula, I., Echeta, C.K. (2020). Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review. International Journal of Food Science. 3:1-32. 10.47604/ijf.1024
Colak N, Kurt-Celebi A, Gruz J, Strnad M, Hayirlioglu-Ayaz S, Choung MG, Esatbeyoglu T, Ayaz FA. (2022). The Phenolics and Antioxidant Properties of Black and Purple versus White Eggplant Cultivars. Molecules. 8:2410. doi: 10.3390/molecules27082410.
Editor(s): Emma Short, A Prescription for Healthy Living, Academic Press, pages 255-273, ISBN 9780128215739, https://doi.org/10.1016/B978-0-12-821573-9.00023-0.
Estanislao, C.C.G., Ordaz, C.P., San Martín, E.M., Pérez, N.H., Pérez, G.I & Gómez, M.D (2016). 'Cytotoxic effect and apoptotic activity of Parmentiera edulis DC. Hexane extract on the breast cancer cell line MDA-MB-231', Journal of Applied Pharmaceutical Science, 6:15-22. https://doi.org/10.7324/JAPS.2016.600103C.
Faizan, M.D., Kumar, R., Mazumder, A., Salahuddin, Kukreti, N., Kumar, A., Chaitanya, M. V. N. (2024). The medicinal chemistry of piperazines: A review. Chemical Biology & drug design. 103: e14537. doi: 10.1111/cbdd.14537. PMID: 38888058.
Gonthier MP, Verny MA, Besson C, Rémésy C, Scalbert A. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. The Journal of Nutrition. (2003) 133:1853–9. doi: 10.1093/jn/133.6.1853
Gush, L., Shah, S., Gilani, F. (2021). Chapter 23 - Macronutrients and micronutrients,
Haminiuk, C.W.I.; Maciel, G.M.; Plata-Oviedo, M.S.V.; Peralta, R.M. (2012). Phenolic Compounds in Fruits—An Overview. International Journal of Food Science and Technology. 47: 2023–2044.
Julius, B.T., Leach, K.A., Thu, M., Tran, T.M., Mertz, R.A., Braun, D.M., (2017). Sugar transporters in plants: New insights and discoveries. Plant and Cell Physiology, 58:1442-1460. https://doi.org/10.1093/pcp/pcx090
Jung, J.W., Wang, F., Turk, A., Park, J.S., Ma, H., Ma, Y., Noh, H.R., Sui, G., Shin, D.S., Lee, M.K., Roh, Y.S. (2023). Zaluzanin C Alleviates Inflammation and Lipid Accumulation in Kupffer Cells and Hepatocytes by Regulating Mitochondrial ROS. Molecules, 28: 7484. 10.3390/molecules28227484
Lim, T.K. Edible Medicinal and Non-Medicinal Plants. (Springer, Dordrecht. 2012) https://doi.org/10.1007/978-90-481-8661-7_67
Lozano Muñoz, I., & Díaz, N. F. (2020). Minerals in edible seaweed: health benefits and food safety issues. Critical Reviews in Food Science and Nutrition, 62: 1592–1607. https://doi.org/10.1080/10408398.2020.1844637
Milošević T., Argyropouloua, C., Solujić, S., Murat-Spahić, D., and Skaltsaa, H. (2010). Chemical Composition and Antimicrobial Activity of Essential Oils from Centaurea pannonica and C. jacea. Natural Product Communications 5:163-168.
Molina-Quijada D., Medina-Juárez L., González-Aguilar G., Robles-Sánchez R., Gámez-Meza, N. (2010). Phenolic compounds and antioxidant activity of table grape (Vitis vinifera L.) skin from northwest Mexico. CyTA Journal of Food 8:57-63. https://doi.org/10.1080/19476330903146021
Morales-Sánchez, V., Osuna-Fernández, H.R., Brechú-Franco, A., Laguna-Hernández, G. & Vargas-Solís, R. (2015). Evaluación del efecto antiurolítico del fruto de Parmentiera aculeata en rata Wistar. Botanical Sciences, 93:293-298. https://doi.org/10.17129/botsci.99C.C.
National Library of Medicine, recovered from https://www.ncbi.nlm.nih.gov/books/NBK225472/ (august 15, 2024). Food and Nutrition Board, Institute of Medicine, National Academies.
Oh, C. H., & Song, C. H. (2007). Total Synthesis of Neuroprotective Dictyoquinazol A, B, and C. Synthetic Communications, 37:3311–3317. doi:10.1080/00397910701489537
Olatunya, A.M., Adesina, A.J. (2024). Bioactive Lipids, Nutritional Benefits and Phytochemicals Present in Hura Crepitans Seed Oil. Journal of the Mexican Chemical Society. https://doi.org/10.29356/jmcs.v68i3.1950
Ostrowska, K. (2020). Coumarin-piperazine derivatives as biologically active compounds, Saudi Pharmaceutical Journal, 28: 220-232, https://doi.org/10.1016/j.jsps.2019.11.025
Pandohee, J. (2022). ɑ-linolenic acid, Ed: Jasmeet Kour, Gulzar Ahmad Nayik, Nutraceuticals and Health Care, (Academic Press) 279-288, https://doi.org/10.1016/B978-0-323-89779-2.00003-X.
Pérez-Gutiérrez, R.M., Pérez, C., Zavala, M.A., Pérez, S., Hernández, H., Lagunes, F., (2000). Hypoglycaemic effects of lactucin-8-O-methylacrylate of Parmentiera edulis fruit. Journal of Ethnopharmacology 71, 391–394.
Plaza-Díaz, J., Martínez-Agustín, O., Gil-Hernández, A. (2013). Food as a source of mono- and disaccharides; biochemical and metabolic aspects. Nutrición hospitalaria. 28 (4): 5-16.
RafiqT., Azab, S.M., Teo, K.K., Thabane, L., Anand, S.S., Morrison, J de Souza, R., Britz-McKibbin, P. (2021). Nutritional Metabolomics and the Classification of Dietary Biomarker Candidates: A Critical Review, Advances in Nutrition, 2: 2333-2357, https://doi.org/10.1093/advances/nmab054.
Rasouli, H., Farzaei, MH y Khodarahmi, R. (2017). Polyphenols and their benefits: A review. International Journal of Food Properties, 20:1700–1741. https://doi.org/10.1080/10942912.2017.1354017
Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. (2017). Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules. 22:358. doi: 10.3390/molecules22030358.
Santiago-Ruiz, C., Nuricumbo Lievano, V.N., Chapa-Barrios, M.G., Vela-Gutiérrez, G, & Velázquez-López, A. A. (2021). Antimicrobial Activity, Phenolic and Antioxidant Content of Extracts from Cuajilote (Parmentiera aculeata Kunth) Fruits at Different Degrees of Ripening. Journal of the Mexican Chemical Society, 65:161-169. https://doi.org/10.29356/jmcs.v65i2.1270D.
Shang X.F., Morris-Natschke S.L., Yang G.Z., Liu Y.Q., Guo X., Xu, X.S, Goto M, Li, JC., Zhang J.Y., Lee, K.H. (2018). Biologically active quinoline and quinazoline alkaloids part II. Medicinal Research Reviews. 38:1614-1660. doi: 10.1002/med.21492. Feb 27. PMID: 29485730
Sharma, A., Wakode, S., Fayaz F., Khasimbi, S., Pottoo, F.H., Kaur, A. (2020). An Overview of Piperazine Scaffold as Promising Nucleus for Different Therapeutic Targets Current. Pharmaceutical Design. 26:4373-4385. https://doi.org/10.2174/1381612826666200417154810
Šilarová, P., Boulekbache-Makhlouf, L., Pellati, F and Česlová.L. (2019). "Monitoring of Chlorogenic Acid and Antioxidant Capacity of Solanum melongena L. (Eggplant) under Different Heat and Storage Treatments". Antioxidants, 8:234. https://doi.org/10.3390/antiox8070234N.
Vincente, A. R., Manganaris, G. A., Ortiz, C. M., Sozzi, G. O., & Crisosto, C. H. (2014). Nutritional Quality of Fruits and Vegetables. Postharvest Handling, 69–122. doi:10.1016/b978-0-12-408137-6.00005-3.
Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. (2022). The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Frontiers in Nutrition. 9:943911. doi: 10.3389/fnut.2022.943911
Wittstock, U and Halkier, B.A., (2000). Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. Catalyzes the Conversion of L-Phenylalanine to Phenylacetaldoxime in the Biosynthesis of Benzylglucosinolate. The Journal of Biological Chemistry. 275:14659–14666.
Xiong, H., Wang, J., Ran, Q., Lou, G., Peng, C., Gan, Q., Huang, Q. (2019). Hesperidin: A therapeutic agent for obesity. Drug Desing, Development and Therapy. 13: 3855–3866. https://doi.org/10.2147/DDDT.S227499
Zagoskina, N.V., Zubova, M.Y., Nechaeva, T.L., Kazantseva, V.V., Goncharuk, E.A., Katanskaya, V.M., Baranova, E.N., Aksenova, M.A. (2023). Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). International Journal of Molecular Science. 24:13874. https://doi.org/10.3390/ijms241813874
Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. (2023). Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). International Journal Molecular Science. 24:13874. https://doi.org/10.3390/ijms241813874M.P.
Zárate, R., Jaber-Vazdekis, N., Tejera, N., Pérez, J., Rodríguez, C. (2017). Significance of long chain polyunsaturated fatty acids in human health. Clin and Translational Medicine. 6:1-19. https://doi.org/10.1186/s40169-017-0153-6
Zhang, Y., Xun, H., Gao, Q., Qi, F., Sun, J., Tang, F. (2023). "Chemical Constituents of the Mushroom Dictyophora indusiata and Their Anti-Inflammatory Activities" . Molecules 28:2760. https://doi.org/10.3390/molecules2806276

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)