Perfil fitoquímico del fruto de Parmentiera aculeata (Kunth): una funete rica de compuestos nutraceuticos y nutrimentales

Perfil fitoquímico del fruto de Parmentiera aculeata

Autores/as

  • Kati Medina Tecnológico Nacional de México/Instituto Tecnológico de Conkal. Av. Tecnológico S/N, Conkal, Yucatán. 97345, México. https://orcid.org/0000-0003-2616-1681
  • Maribel Ovando Martínez Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, Col. Centro, 83000, Hermosillo, Sonora C.P., México. https://orcid.org/0000-0002-3282-9636
  • Claudia Molina Domínguez Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, Col. Centro, 83000, Hermosillo, Sonora C.P., México.
  • Mario Sánchez Centro de Investigación en Materiales Avanzados, S.C. Alianza Norte 202, PIIT, Carretera Monterrey-Aeropuerto Km. 10, Apodaca, N.L. CP 66600, México.
  • Jorge Canul Matú Tecnológico Nacional de México/Instituto Tecnológico de Conkal. Av. Tecnológico S/N, Conkal, Yucatán. 97345, México.

DOI:

https://doi.org/10.18633/biotecnia.v27.2556

Palabras clave:

pepino kat, calidad de fruta, fitoquímica, medicina tradicional, perfil metabolómico no dirigido

Resumen

El fruto de Parmentiera aculeata se ha utilizado localmente por sus propiedades medicinales, pero no se han caracterizado sus compuestos bioactivos. Así, para identificar y cuantificar sus compuestos nutracéuticos y nutricionales, utilizamos UPLC-Q-TOF-MS y metabolómica no dirigida, detectando 725 metabolitos, incluidos compuestos anticancerígenos (genkwanina, hespiridina y fenilcetaldoxima) y antidiabéticos (metformina). También utilizamos HPLC-DAD para cuantificar los compuestos fenólicos cianidina, catequina y ácidos p-cumárico, 4-hidroxibenzoico, gálico y clorogénico (50, 70, 80, 210, 220 y 340 µg.g–1 respectivamente) la GC-MS se utilizó para analizar el perfil vitamínico (contenido de β-caroteno < 2 ng.mg–1). La fructosa, la glucosa y la sacarosa se cuantificaron mediante HPLC-ELSD con 3.06, 2.77 y 78.0 mg.100 g–1, respectivamente. Los espectros de emisión atómica mostraron que los contenidos de K, Ca, P, Mg, Na, Fe, Zn fueron 13 261.37, 1 114.77, 1 048.27, 932.06, 300.53, 22.03 y 27.27 mg kg–1, respectivamente. Se identificaron y cuantificaron, palmítico, heptadecanoico, esteárico, oleico, linoleico, araquídico, linolénico, heneicosanoico y tricosanoico como los principales ácidos grasos utilizando una mezcla de 37 estándares. Estos hallazgos corroboran los aportes medicinales, nutracéuticos y nutricionales de esta versátil fruta que muestra su potencial como cultivo comestible de alto valor agregado.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Maribel Ovando Martínez, Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, Col. Centro, 83000, Hermosillo, Sonora C.P., México.

Dra en Ciencias de los alimentos, especialista en el estudio de compuestos antioxidantes.

Claudia Molina Domínguez, Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, Col. Centro, 83000, Hermosillo, Sonora C.P., México.

Licenciada química bióloga, especializada en análisis químico analítico

Mario Sánchez, Centro de Investigación en Materiales Avanzados, S.C. Alianza Norte 202, PIIT, Carretera Monterrey-Aeropuerto Km. 10, Apodaca, N.L. CP 66600, México.

Dr. en ciencias químicas experto en el modelado molecular de compuestos orgánicos e inorgánicos, incluidos los antioxidantes.

Jorge Canul Matú, Tecnológico Nacional de México/Instituto Tecnológico de Conkal. Av. Tecnológico S/N, Conkal, Yucatán. 97345, México.

Lic en matemáticas, con maestría en estadística 

Citas

Agostoni, C., Moreno, L., y Shamir, R. (2016). Palmitic Acid and Health: Introduction: Critical Reviews in Food Science and Nutrition, 56:1941–1942. https://doi.org/10.1080/10408398.2015.1017435

Andrade-Cetto, A. Heinrich, M. (2005). Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology.doi.org/10.1016/j.jep.2005.04.019

Arsic, A., Stojanovik, A., Mikic, M. (2019). Oleic cid- Health Benefits and Status in Plasma Phospholipids in the Serbian Population. Experimental and Applied Biomedical Research (EABR). 20 (2):1-8

Ashani, Y & Silman, I. (2008). Hydroxylamines and oximes: Biological properties and potential uses as therapeutic agents. The chemistry of hydroxylamines, oximes and hydroxamic acids, 609-651. https://doi.org/10.1002/9780470682531.pat0465

Binukumar B., Mathew A. (2005). Dietary fat and risk of breast cancer. World Journal of Surgical Oncology. 18:45. doi:10.1186/1477-7819-3-45. C.

Buczynski, M.W., Dumlao DS, Dennis E.A. (2009). Thematic Review Series: proteomics. An integrated omics analysis of eicosanoid biology1 [S]. Journal of Lipid Research 50(6):1015–1038.

Chinaza, A., Igwe, V.S., Otuosorochi, Amagwula, I., Echeta, C.K. (2020). Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review. International Journal of Food Science. 3:1-32. 10.47604/ijf.1024

Colak N, Kurt-Celebi A, Gruz J, Strnad M, Hayirlioglu-Ayaz S, Choung MG, Esatbeyoglu T, Ayaz FA. (2022). The Phenolics and Antioxidant Properties of Black and Purple versus White Eggplant Cultivars. Molecules. 8:2410. doi: 10.3390/molecules27082410.

Editor(s): Emma Short, A Prescription for Healthy Living, Academic Press, pages 255-273, ISBN 9780128215739, https://doi.org/10.1016/B978-0-12-821573-9.00023-0.

Estanislao, C.C.G., Ordaz, C.P., San Martín, E.M., Pérez, N.H., Pérez, G.I & Gómez, M.D (2016). 'Cytotoxic effect and apoptotic activity of Parmentiera edulis DC. Hexane extract on the breast cancer cell line MDA-MB-231', Journal of Applied Pharmaceutical Science, 6:15-22. https://doi.org/10.7324/JAPS.2016.600103C.

Faizan, M.D., Kumar, R., Mazumder, A., Salahuddin, Kukreti, N., Kumar, A., Chaitanya, M. V. N. (2024). The medicinal chemistry of piperazines: A review. Chemical Biology & drug design. 103: e14537. doi: 10.1111/cbdd.14537. PMID: 38888058.

Gonthier MP, Verny MA, Besson C, Rémésy C, Scalbert A. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. The Journal of Nutrition. (2003) 133:1853–9. doi: 10.1093/jn/133.6.1853

Gush, L., Shah, S., Gilani, F. (2021). Chapter 23 - Macronutrients and micronutrients,

Haminiuk, C.W.I.; Maciel, G.M.; Plata-Oviedo, M.S.V.; Peralta, R.M. (2012). Phenolic Compounds in Fruits—An Overview. International Journal of Food Science and Technology. 47: 2023–2044.

Julius, B.T., Leach, K.A., Thu, M., Tran, T.M., Mertz, R.A., Braun, D.M., (2017). Sugar transporters in plants: New insights and discoveries. Plant and Cell Physiology, 58:1442-1460. https://doi.org/10.1093/pcp/pcx090

Jung, J.W., Wang, F., Turk, A., Park, J.S., Ma, H., Ma, Y., Noh, H.R., Sui, G., Shin, D.S., Lee, M.K., Roh, Y.S. (2023). Zaluzanin C Alleviates Inflammation and Lipid Accumulation in Kupffer Cells and Hepatocytes by Regulating Mitochondrial ROS. Molecules, 28: 7484. 10.3390/molecules28227484

Lim, T.K. Edible Medicinal and Non-Medicinal Plants. (Springer, Dordrecht. 2012) https://doi.org/10.1007/978-90-481-8661-7_67

Lozano Muñoz, I., & Díaz, N. F. (2020). Minerals in edible seaweed: health benefits and food safety issues. Critical Reviews in Food Science and Nutrition, 62: 1592–1607. https://doi.org/10.1080/10408398.2020.1844637

Milošević T., Argyropouloua, C., Solujić, S., Murat-Spahić, D., and Skaltsaa, H. (2010). Chemical Composition and Antimicrobial Activity of Essential Oils from Centaurea pannonica and C. jacea. Natural Product Communications 5:163-168.

Molina-Quijada D., Medina-Juárez L., González-Aguilar G., Robles-Sánchez R., Gámez-Meza, N. (2010). Phenolic compounds and antioxidant activity of table grape (Vitis vinifera L.) skin from northwest Mexico. CyTA Journal of Food 8:57-63. https://doi.org/10.1080/19476330903146021

Morales-Sánchez, V., Osuna-Fernández, H.R., Brechú-Franco, A., Laguna-Hernández, G. & Vargas-Solís, R. (2015). Evaluación del efecto antiurolítico del fruto de Parmentiera aculeata en rata Wistar. Botanical Sciences, 93:293-298. https://doi.org/10.17129/botsci.99C.C.

National Library of Medicine, recovered from https://www.ncbi.nlm.nih.gov/books/NBK225472/ (august 15, 2024). Food and Nutrition Board, Institute of Medicine, National Academies.

Oh, C. H., & Song, C. H. (2007). Total Synthesis of Neuroprotective Dictyoquinazol A, B, and C. Synthetic Communications, 37:3311–3317. doi:10.1080/00397910701489537

Olatunya, A.M., Adesina, A.J. (2024). Bioactive Lipids, Nutritional Benefits and Phytochemicals Present in Hura Crepitans Seed Oil. Journal of the Mexican Chemical Society. https://doi.org/10.29356/jmcs.v68i3.1950

Ostrowska, K. (2020). Coumarin-piperazine derivatives as biologically active compounds, Saudi Pharmaceutical Journal, 28: 220-232, https://doi.org/10.1016/j.jsps.2019.11.025

Pandohee, J. (2022). ɑ-linolenic acid, Ed: Jasmeet Kour, Gulzar Ahmad Nayik, Nutraceuticals and Health Care, (Academic Press) 279-288, https://doi.org/10.1016/B978-0-323-89779-2.00003-X.

Pérez-Gutiérrez, R.M., Pérez, C., Zavala, M.A., Pérez, S., Hernández, H., Lagunes, F., (2000). Hypoglycaemic effects of lactucin-8-O-methylacrylate of Parmentiera edulis fruit. Journal of Ethnopharmacology 71, 391–394.

Plaza-Díaz, J., Martínez-Agustín, O., Gil-Hernández, A. (2013). Food as a source of mono- and disaccharides; biochemical and metabolic aspects. Nutrición hospitalaria. 28 (4): 5-16.

RafiqT., Azab, S.M., Teo, K.K., Thabane, L., Anand, S.S., Morrison, J de Souza, R., Britz-McKibbin, P. (2021). Nutritional Metabolomics and the Classification of Dietary Biomarker Candidates: A Critical Review, Advances in Nutrition, 2: 2333-2357, https://doi.org/10.1093/advances/nmab054.

Rasouli, H., Farzaei, MH y Khodarahmi, R. (2017). Polyphenols and their benefits: A review. International Journal of Food Properties, 20:1700–1741. https://doi.org/10.1080/10942912.2017.1354017

Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. (2017). Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules. 22:358. doi: 10.3390/molecules22030358.

Santiago-Ruiz, C., Nuricumbo Lievano, V.N., Chapa-Barrios, M.G., Vela-Gutiérrez, G, & Velázquez-López, A. A. (2021). Antimicrobial Activity, Phenolic and Antioxidant Content of Extracts from Cuajilote (Parmentiera aculeata Kunth) Fruits at Different Degrees of Ripening. Journal of the Mexican Chemical Society, 65:161-169. https://doi.org/10.29356/jmcs.v65i2.1270D.

Shang X.F., Morris-Natschke S.L., Yang G.Z., Liu Y.Q., Guo X., Xu, X.S, Goto M, Li, JC., Zhang J.Y., Lee, K.H. (2018). Biologically active quinoline and quinazoline alkaloids part II. Medicinal Research Reviews. 38:1614-1660. doi: 10.1002/med.21492. Feb 27. PMID: 29485730

Sharma, A., Wakode, S., Fayaz F., Khasimbi, S., Pottoo, F.H., Kaur, A. (2020). An Overview of Piperazine Scaffold as Promising Nucleus for Different Therapeutic Targets Current. Pharmaceutical Design. 26:4373-4385. https://doi.org/10.2174/1381612826666200417154810

Šilarová, P., Boulekbache-Makhlouf, L., Pellati, F and Česlová.L. (2019). "Monitoring of Chlorogenic Acid and Antioxidant Capacity of Solanum melongena L. (Eggplant) under Different Heat and Storage Treatments". Antioxidants, 8:234. https://doi.org/10.3390/antiox8070234N.

Vincente, A. R., Manganaris, G. A., Ortiz, C. M., Sozzi, G. O., & Crisosto, C. H. (2014). Nutritional Quality of Fruits and Vegetables. Postharvest Handling, 69–122. doi:10.1016/b978-0-12-408137-6.00005-3.

Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. (2022). The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Frontiers in Nutrition. 9:943911. doi: 10.3389/fnut.2022.943911

Wittstock, U and Halkier, B.A., (2000). Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. Catalyzes the Conversion of L-Phenylalanine to Phenylacetaldoxime in the Biosynthesis of Benzylglucosinolate. The Journal of Biological Chemistry. 275:14659–14666.

Xiong, H., Wang, J., Ran, Q., Lou, G., Peng, C., Gan, Q., Huang, Q. (2019). Hesperidin: A therapeutic agent for obesity. Drug Desing, Development and Therapy. 13: 3855–3866. https://doi.org/10.2147/DDDT.S227499

Zagoskina, N.V., Zubova, M.Y., Nechaeva, T.L., Kazantseva, V.V., Goncharuk, E.A., Katanskaya, V.M., Baranova, E.N., Aksenova, M.A. (2023). Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). International Journal of Molecular Science. 24:13874. https://doi.org/10.3390/ijms241813874

Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. (2023). Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). International Journal Molecular Science. 24:13874. https://doi.org/10.3390/ijms241813874M.P.

Zárate, R., Jaber-Vazdekis, N., Tejera, N., Pérez, J., Rodríguez, C. (2017). Significance of long chain polyunsaturated fatty acids in human health. Clin and Translational Medicine. 6:1-19. https://doi.org/10.1186/s40169-017-0153-6

Zhang, Y., Xun, H., Gao, Q., Qi, F., Sun, J., Tang, F. (2023). "Chemical Constituents of the Mushroom Dictyophora indusiata and Their Anti-Inflammatory Activities" . Molecules 28:2760. https://doi.org/10.3390/molecules2806276

Resumen gráfico

Publicado

2025-05-21

Cómo citar

Medina, K., Ovando Martínez, M., Molina Domínguez, C., Sánchez, M., & Canul Matú, J. (2025). Perfil fitoquímico del fruto de Parmentiera aculeata (Kunth): una funete rica de compuestos nutraceuticos y nutrimentales: Perfil fitoquímico del fruto de Parmentiera aculeata. Biotecnia, 27, e2556. https://doi.org/10.18633/biotecnia.v27.2556

Número

Sección

Artículos originales

Métrica